

MANUAL FOR DEGREE OPTIONS

1. MULTIDISCIPLINARY MINOR (EMBEDDED WITH BASIC DEGREE)

2. DOUBLE MINOR (DM) (OPTIONAL MINOR IN EMERGING AREAS)

3. HONOURS WITH RESEARCH (OPTIONAL)

<u>First to Final Year Engineering</u> (Sem. III to Sem. VIII)

REVISION: FRCRCE-2-25

Effective from Academic Year 2025-26 Board of Studies Approval: 28/02/2025 Academic Council Approval: 14/02/2025 & 8/3/2025

Dr. DEEPAK BHOIR Dean Academics

Tershood

DR. SURENDRA RATHOD Principal

Preamble:

Government of Maharashtra has directed Autonomous Colleges to revise their curriculum in line with National Education Policy (NEP) 2020 through Government Resolution dated 4th July 2023. Following degree options are given to the students admitted from academic year 2024-25 based on UGC circulars and DTE guidelines ref no. 17/DTE/NEP-2020/2024/111 dated 4th June 2024 related to implementation of NEP.

Credit requirements for different options of the Degrees:

	20	22	22	22	22	20	20	168
							20	108
	20							
`	20	22	22	22	22	20	20	188
' -	+2*	+4*	+4*	+4*	+4*	+2\$	+2\$	100
,	20	22	22	22	22	20	20	100
' -	+2*	+4*	+4*	+4*	+4*	+2\$	+2\$	188
)	+2*	+2* +4* 20 22	$+2^{*} +4^{*} +4^{*}$ 20 22 22	$+2^{*} +4^{*} +4^{*} +4^{*}$	$+2^{*}$ $+4^{*}$ $+4^{*}$ $+4^{*}$ $+4^{*}$ $+4^{*}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

*Optional Credits \$ credits (2) an be earned in VII/VIII

1. Learners who earn a minimum of total 168 credits will be awarded "B.Tech in Engg. /Tech. with Multidisciplinary Minor (MDM)" degree.

2. Learners will have the following options to earn **B. Tech. in Engg. /Tech. degree in**

a. Major Engg./Tech Discipline with Double Minor (Multidisciplinary and Specialization Minor)

b. Honors with Research and Multidisciplinary Minor

There is 2 credit course 'Introduction to Emerging Technologies' in SEM-II introducing various emerging technologies along with basics of various tracks under multidisciplinary, minor and research domain helping student in decision making for further options of learning.

a) Major Engg./Tech Discipline with Double Minor (Multidisciplinary and Specialization Minor) (additional 20 credits): 168 +18+2 (SEM-II)=188 Min Credits.

There will be four courses (4 credits each), one in each semester starting from the 3rd semester which will be from emerging areas of specialisation. In 7th or 8th semester students will complete 2 credits seminar/project. Admission eligibility min CGPA=7.5 after First year

b) B.Tech in Engg./ Tech.- Honors with Research and Multidisciplinary Minor (additional 20 credits by research): 168 +18+2 (SEM-II)=188 Min Credits. (Admission eligibility min CGPA=7.5 after First and should maintain CGPA=7.5 after Third year)

3. Learner can earn the certificate/Diploma/Degree based on his/her exit from the program as follows. College shall explore feasibility to offer NSDC aligned skill based courses to the learners:

a. UG Certificate: After a one-year (40 credits to be earned) and 8-credits summer workshop/vocational courses/internship

b. UG Diploma: After two-years (80 credits to be earned) and 8-credits summer workshop/vocational courses/internship/Project

c. B. Voc.: After three-years (120 credits to be earned) and 8-credits summer workshop/vocational courses/internship/Project

Guidelines for <u>'Honours with Research'</u> Degree Option:

- ✤ Admission eligibility min CGPA=7.5 after First year
- ♦ Need to maintain CGPA=7.5 after Third year
- Optional additional 20 credits by research project to be completed
- SEM-II: 2 Credits, SEM-III to SEM-VI: 4 in each SEM, Final Year: 2 Credits Seminar
- ✤ Basic MDM degree along with honors with research: Total=188 Min Credits
- Student need to identify the domain of research at the start of SEM-III and work in the same domain for entire year
- Change in domain will be allowed only after one year
- Research Project need to be in the Basic (Core) Branch of degree or Specialisation in basic degree. However, emerging technology can be used as a tool/methodology for doing the research.
- Following are the expected **milestones or outcomes** at the **end of academic year:**

1. Second Year:

Two papers presented by student (One in Each Sem) in International Conference of repute **2. Third Year:**

One Journal paper in reputed International Journal/ One patent published

One paper presented by student in International Conference of repute

3. Fourth Year:

Participation in University/State/National/International Level Research Colloquium or Project Competition or Product Exhibition

- If expected milestones are not achieved then student will be discontinued in next semester from the 'Honours with Research' Degree option.
- Severy student will have an independent Research Project and milestones to be achieved
- Department teachers shall float the Research Projects outlining the scope and work. These Research Projects need to follow the below mentioned approval mechanism
 - 1. Student shall discuss with Research Project Supervisor and get approval in writing
 - 2. Research supervisor shall take approval of HoD for all research projects under him/her.
- HoD must take care of proper distribution of research projects among faculty. If 'Research Project' demands multidisciplinary concept then Co-supervisor from same or other department can be opted.
- HoD shall arrange common presentation by student in front of department faculty on the research idea selected by student before allotment.
- Approval from Dean Research & Development shall be taken HoD for all the allotted projects. Research Project reports written by student and outcomes achieved at the end of each semester shall compulsorily be submitted by Research Supervisor to Dean R&D. Dean R&D shall maintain the data for the same.
- Every week student shall submit progress to Research Supervisor and at the end of the semester student shall give presentation in front of all department faculty. If necessary then External Expert/Alumni can be invited for mentoring and judging the project.
- Rubrics for assessment of projects shall be developed, informed to all students & supervisors and must be followed in each department.

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Guidelines for 'MDM and DM Degree Option'

UG Basic Degree	MDM Options included in Basic Degree	Double Minor (Emerging Areas) Options
Computer Engineering		1. VLSI Design &
Computer Science & Engineering	1.Communication Engineering 2.Mechanical Engineering 3.Business Management	Verification 2. Internet of Things 3. Automation a Robotics 4. Sustainability
Electronics & Computer Science	4.Healthcare Management 5.Design	 Data Science Automation & Robotics Blockchain Technology Cyber Security Sustainability
Mechanical Engineering	 Computer Engineering Electronics Engineering Business Management Healthcare Management Design 	 Data Science AI & ML Internet of Things Sustainability

Minor in Communication Engineering: (Offered to Comp, CSE & ECS)

Course Code	Communication Engineering Minor Courses	Credits
25MDMCM1	Signals and System	2
25MDMCM2	Analog and Digital Communication	2
25MDMCM3	Microcontrollers and Applications	2
25MDMCM4	Communication and Computer Networks	2
25MDMCM5	Mobile Communication and Computing	2

Minor in Mechanical Engineering: (Offered to Comp, CSE & ECS)

Course Code	Mechanical Engineering Minor Courses	Credits
25MDMME1	Elements of Mechanical Engineering	2
25MDMME2	Manufacturing Engineering	2
25MDMME3	Product Design and Development	2
25MDMME4	Industrial Engineering	2
25MDMME5	Supply Chain Management	2

Minor in Computer Engineering: (Offered to Mech)

Course Code	Computer Engineering Minor Courses	
25MDMCE1	Data Structures and Algorithms	2
25MDMCE2	Database Management System	2
25MDMCE3	Microcontrollers and Applications	2
25MDMCE4	AI and Applications	2
25MDMCE5	Human Machine Interface	2

Minor in Electronics Engineering: (Offered to Mech)

Course Code	Electronics Engineering Minor Courses	Credits
25MDMEL1	Signals and System	2
25MDMEL2	Digital Electronics	2
25MDMEL3	Microcontrollers and Applications	2
25MDMEL4	Linear Integrated Circuits	2
25MDMEL5	Industrial Electronics	2

Minor in Business Management: (Offered to all branches)

Course Code	Business Management Minor Courses	Credits
25MDMBM1	Financial Accounting	2
25MDMBM2	Economics for Business	2
25MDMBM3	Business Administration	2
25MDMBM4	Human Resource Management	2
25MDMBM5	Digital Marketing	2

Minor in Healthcare Management: (Offered to all branches)

Course Code	Healthcare Management Minor Courses	Credits
25MDMHM1	MHM1 Biomedical Instrumentation & Imaging	
25MDMHM2	Hospital Administration Fundamentals	2
25MDMHM3	Operations Management for Healthcare Systems	2
25MDMHM4	Digital Transformation in HealthCare	2
25MDMHM5	Bioinformatics and Computational Biology	2

Minor in Design: (Offered to all branches)

Course Code	Design Minor Courses	Credits
25MDMDE1	Industrial and Product Design	2
25MDMDE2	Communication Design	2
25MDMDE3	Graphic Design and Animation	2
25MDMDE4	Interaction Design	2
25MDMDE5	Mobility and Vehicle Design	2

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

(Autonomous College affiliated to University of Mumbai)

List of Track related to Double Minor Degree in 'Emerging Areas' :

1. Name: VLSI Design and Verification (offered to Comp and CSE)

- 1. 25DM11: VLSI Design Flow
- 2. 25DM12: FPGA Programming
- 3. 25DM13: Verification using System Verilog
- 4. 25DM14: AI and ML for VLSI

2. Name: Internet of Things (offered to Comp, CSE and Mech)

- 1. 25DM21: Sensors and Actuators
- 2. 25DM22: Fundamentals of IoT
- 3. 25DM23: Embedded System and RTOS
- 4. 25DM24: System Design

3. Name: Automation and Robotics (offered to Comp, CSE and ECS)

- 1. 25DM31: Introduction to CAD/CAM
- 2. 25DM32: 3D Printing
- 3. 25DM33: Mechatronics
- 4. 25DM34: Industrial Robotics and Automation

4. Name: Sustainability (offered to all)

- 1. **25DM41:** Design Thinking for Sustainability
- 2. 25DM42: Green Computing
- 3. 25DM43: Emerging Technologies for Sustainability
- 4. 25DM44: Sustainable Product Design

5. Name: Data Science (offered to ECS, Mech)

- 1. 25DM51: Statistics for Data Science
- 2. 25DM52: Data Analytics and Visualisation
- 3. 25DM53: Game Theory
- 4. 25DM54: Web and Social Media Analytics

6. Name: Artificial Intelligence and Machine Learning (offered to Mech)

- 1. 25DM61: Statistics for Data Science
- 2. 25DM62: Fundamentals of AI & ML
- 3. **25DM63:** Natural Language Processing
- 4. 25DM64: Artificial Intelligence for Mechanical Engineering

7. Name: Blockchain Technology (offered to ECS)

- 1. 25DM71: Blockchain Basics
- 2. 25DM72: Bitcoin and Cryptocurrency
- 3. **25DM73:** Blockchain Security
- 4. 25DM74: Industrial Blockchain

8. Name: Cyber Security (offered to ECS)

- 1. 25DM81: Cyber Security Essentials
- 2. 25DM82: Web Application, Penetration Testing and Ethical Hacking
- 3. 25DM83: Digital Forensic
- 4. 25DM84: Cloud and IoT Security

MULTIDISCIPLINARY MINOR (EMBEDDED WITH BASIC DEGREE)

Minor in Communication Engineering: (Offered to CE, CSE and ECS)

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

	,		
(Autonomous	College affiliated	to University	of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week) Credits Assigned					L		
		L	Т	Р	L	Т	Р	Total	
25MDMCM1	Signals and	2			2			2	
	Systems		Exar	nination	Schem	e			
			ISE1	MSE	ISE2	ESE		Total	
		Theory	20	30	20	30		100	

Pre-requisite Course Codes	Basic co	Basic concepts of Mathematics		
	CO1	Identify and differentiate between continuous and discrete time signals and systems		
Course Outcomes	CO2	Develop input output relationship for LTI systems		
	CO3	Apply the concept of Laplace transform and understand conversion from time domain to frequency domain for continuous time systems.		
	CO4	Apply the concept of Z transform and comprehend conversion from time domain to frequency domain for discrete time systems.		
	CO5	Discuss various applications of signals and system		

Module No.	Unit No.	Topics	Ref.	Hrs
		Introduction to Signals and Systems	1,2,3,4	4
1	1.1	 Introduction to Signals: Definition, Basic Elementary signals - exponential, sine, step, impulse, ramp, rectangular, triangular. Operations on signals. Classification of Signals: Analog and discrete time signals, even and odd signals, periodic and non-periodic signals , deterministic and non-deterministic signals, energy and power signals. Arithmetic Operations on Signals, Time Shifting, Time Scaling, Time Reversal of Signals 		
	1.2	Systems and Classification of systems: System Representation, continuous time and discrete systems, system with and without memory, causal and non-causal system, linear and nonlinear system, time invariant and time variant system, stable system		
		Time Domain Analysis of Continuous and Discrete Systems	1,2,3,4	6
2	2.1	Properties of Linear Time Invariant (LTI) systems, Impulse and Step Response		

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

(Autonomous College affiliated to University of Mumbai)

			Total	2
	5.4	Robotics and IoT Applications		
	5.3	Mechanical and Civil Engineering Applications		
	5.2	Computer Science and IT Applications		
5	5.1	Electrical and Electronics Engineering Applications		
		Applications of Signals and System		4
		Transfer Function, plotting Poles and Zeros of a transfer function, causality and stability of systems, Total response of a system		
	4.2			
4	4.1	Need of <i>z</i> -Transform, <i>z</i> -Transform of finite and infinite duration sequences, Concept of Region of Convergence, <i>z</i> -Transform properties, Standard z-transform pairs, one sided z- Transform. Inverse z-Transform: Partial Fraction method only.		
		z-Transform and Discrete time LTI systems	1,2,3,4	6
		Causality and stability of systems in <i>s</i> -domain, Total response of a system.		
	3.2	Analysis of continuous time LTI systems using Laplace Transform:		
3	3.1	Need of Laplace Transform, Concept of Region of Convergence, Properties of Laplace Transform, , unilateral Laplace Transform, inverse Laplace Transform.		
		Laplace Transform and Continuous time LTI systems	1,2,3,4	6
	2.3	Properties of Convolution Integral/Sum		
	2.2	Analysis of LTI Systems		
	2.2	Use of Convolution Integral and Convolution Sum and Correlation for		

Course Assessment:

Theory:

ISE-1: Activity: Quiz and assignments 20 Marks ISE-2: Activity: Quiz and Assignments 20 Marks

MSE: 30 Marks written examination based on 50% syllabus (Duration:90 minutes) **ESE:** 30 Marks written examination based on remaining syllabus after MSE

(Duration:90 minutes)

Recommended Books:

- 1. Tarun Kumar Rawat, "Signals and Systems", Oxford University Press, 2016.
- 2. A. Nagoor Kani, "Signals and Systems", Tata McGraw-Hill Education, 2014.
- 3. Alan V. Oppenhiem, Alan S. Willsky and S. Hamid Nawab, Signals and Systems, Prentice-Hall of India, Second Edition, 2002.
- 4. Simon Haykin and Barry Van Veen, Signals and Systems, John Wiley and Sons, Second Edition, 2004.

Course Code	Course Name	Teach (H	Credits Assigned						
		L	Т	Р	L	Т	Р	Total	
	Analog and Digital Communication	2			2		-	2	
25MDMCM2		Examination Scheme							
			ISE1	MSE	ISE2	ESE]	Fotal	
		Theory	20	30	20	30		100	

Pre-requisite	PCC11EC03 (Digital Electronics), MDMXX1(Signals & systems),							
Course Codes	PCC12EC05 (Electronic Devices)							
	CO1	Explain types and parameters of noise and the need for modulation.						
	CO2	Analyze various amplitude and angle modulation techniques.						
	CO3	Discuss the operation of radio receivers and demodulators.						
Course Outcomes	CO4	Generate and detect pulse modulation techniques.						
	CO5	Derive performance parameters of Digital modulation methods						
	CO6	Simulate/implement various analog and digital modulation techniques.						

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Introduction to Communication	2,6	3
	1.1	Types of Noise, Signal-to-noise ratio, Noise factor, Noise Figure, Noise Temperature		
	1.2	Need for modulation		
2		Amplitude Modulation		6
	2.1	Amplitude Modulation: Representation of AM wave (Mathematical & Graphical), Frequency spectrum of AM wave, AM Power Distribution, AM for a Complex Modulating Signal: modulation index, power distribution, and Current Distribution	1,2, 3,6	
	2.2	Types of AM : Generation of DSB-SC using diode based balanced modulator, Generation of SSB using phase shift method		
3		Angle modulation	1,2,	6
	3.1	Theory of Frequency Modulation (FM) & Phase Modulation (PM) - Basic Concepts, Spectrum Analysis of FM Wave, Noise triangle, Pre-emphasis, De-emphasis, Comparison of AM, FM and PM	3,6	

		(Autonomous College affiliated to University of Mumba	1)	
	3.2	Radio receivers: Superheterodyne Receiver, Receiver Characteristics: Sensitivity, Selectivity, Fidelity and Image frequency rejection ratio, choice of Intermediate frequency, Diode detector for AM, Frequency discriminator and Phase discriminator methods for FM		
4		Pulse Modulation	1,2,	6
	4.1	Sampling theorem, aperture effect and aliasing	3,6	
	4.2	Generation and Detection of Pulse Amplitude Modulation (PAM)		
	4.3	Pulse Code Modulation (PCM), Delta Modulation (DM), Advanced Delta Modulation (ADM)		
	4.4	Multiplexing Techniques: Time Division Multiplexing (TDM): T1 carrier system, Frequency Division Multiplexing (FDM)		
5		Digital Modulation Techniques	1,3,	5
5	5.1	Generation, detection, signal space diagram, power spectral density and bandwidth of: Binary Phase Shift Keying (BPSK), Quaternary Phase Shift Keying (QPSK), M-ary PSK, Binary Amplitude Shift Keying (BASK), Quadrature Amplitude Modulation (QAM), Binary Frequency Shift Keying (BFSK), Minimum Shift Keying (MSK).	4,5, 6	5
	I		Total	26

Course Assessment:

Theory:

ISE-1 (20M):

Activity: Practical assignment on DSB-FC (AM), SSB, DSB-SC, FM.

ISE-2 (20M):

Activity: Practical assignment on sampling theorem, pulse modulation, TDM, FDM, and digital modulation techniques.

MSE: 90 minutes 30 Marks written examination based on 50% syllabus **ESE:** 90 minutes 30 Marks written examination based on the remaining syllabus after MSE

Recommended Books:

- 1. Principles of Communication Systems, Taub Schilling & Saha, Tata Mc-Graw Hill, Third Ed
- 2. Electronics Communication System, George Kennedy, Bernard Davis and Prasanna, Tata McGraw Hill, 6th Ed, 2018
- 3. Analog and Digital Communication, T. L. Singal, Tata Mc-Graw Hill, New Delhi, First Edition, 2012.
- 4. Digital Communication: Fundamentals and Applications, Sklar B. & Ray P. K., Pearson, Dorling Kindersley (India), 2nd edition, 2006

- 5. Digital communication, Simon Haykin, John Wiley and sons, 2010
- 6. Electronics Communication Systems, Wayne Tomasi, Pearson Education, Third Edition, 2001.

Online Resources:

- 1. <u>https://www.mathworks.com/help/comm/ug/analog-baseband-examples.html</u>
- 2. <u>https://www.mathworks.com/help/comm/ug/analog-passband-modulation-examples.html</u>
- 3. https://github.com/Nikeshbajaj/ASK_PSK_FSK

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
	Microcontrollers and Applications	L	Т	Р	L	Т	Р	Total	
		2			2			2	
25MDMCM3		Examination Scheme							
			ISE1	MSE	ISE2	ESE	T	otal	
		Theory	20	30	20	30	1	00	

Pre-requisite Course	Digital Electronics,						
Codes	C programming						
	At the I	End of the course students will be able to:					
	CO1	Explain the fundamental concepts of microcontrollers					
	CO2	Develop programming skills for microcontrollers using Embedded C concepts					
Course Outcomes (CO)	CO3	Program various on-chip components of microcontrollers					
(00)	CO4	Interface various devices to the 8051 microcontroller					
	CO5	Evaluate various enhancements in modern microcontrollers					
		based on the ARM CORTEX cores					

Module	Unit	Topics	Ref.	Hrs.	
No.	No.				
1		8051 Microcontroller Architecture			
	1.1	1.1 Introduction to the concepts of Microprocessors and Microcontrollers			
	1.2	Concept of Buses, Read/write operations, T state, Machine cycle and Instruction cycle	1,2		
	1.3	8051 Architecture	1,2		
	1.4	8051 Memory organization	1,2		
	1.4	RISC and CISC Concepts, Harvard and Von Neumann Architectures	1,2		
	1.5	Overview of various available Microcontrollers, Applications of Microcontrollers	1,2		
2		Programming the 8051		4	
	2.1	Assembly language programming, Addressing modes	1,2		
	2.2	Embedded C programming concepts: Data types, Modifiers, Qualifiers, Functions, Macros, Interrupt service routines.	1,2		
3		8051 Internal Hardware		6	
	3.1	I/O port programming	1,2		
	3.2	Timers/Counters programming	1,2		
	3.3	Serial port programming	1,2		
	3.4	Interrupts programming	1,2		
	3.5	Low power modes of the 8051	1,2		

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

(Autonomous College affiliated to University of Mumbai)

4		8051 Interfacing		
	4.1	Display interfacing: LED, 16x2 generic alphanumeric LCD display.	1	6
	4.2	Analog devices interfacing: 8-bit ADC, 8-bit DAC, temperature sensor (LM35)	1	
	4.3	Motor interfacing: Relay, DC motor (speed control using PWM), Stepper motor and Servo motor.	1	
5		ARM Cortex microcontrollers		4
	5.1	Introduction to the ARM Cortex family	3	
	5.2	Salient features of ARM Cortex cores: RISC design, Operating modes and states, NVIC, Low power modes	3	
	•		Total	26

Course Assessment:

ISE-1:

Embedded C programming: Arithmetic /Logical operations, I/O port, Timer/Counter, Serial port [20 Marks]

ISE-2:

Embedded C programming: LCD Interfacing, Stepper motor interfacing, DC motor interfacing, Sensor Interfacing [20 Marks]

Note: In ISE 2, Interfacing with Arduino boards can be introduced

MSE: 30 Marks 90 minutes written examination based on 50% syllabus **ESE:** 30 Marks 90 Minutes written examination based on remaining syllabus after MSE

Recommended Books

1.M.A.Mazidi, J.C.Mazidi, Rolin D. McKinlay,"The 8051 Microcontroller and Embedded Systems

Using Assembly and C", Pearson Education, Second Edition, 2007.

2. Kenneth J. Ayala, "The 8051 Microcontroller", Cengage Learning India Pvt. Ltd, Third Edition,

2005.

3.Joseph Yiu, "The Definitive guide to ARM CORTEX-M3 & CORTEX-M4 Processors", Elsevier, 2014, 3rd Edition.

Reference Books:

1.Raj Kamal, "Microcontrollers: Architecture, Programming, Interfacing and System Design", Pearson Education, 2009.

2. Manish K Patel, "The 8051 Microcontroller Based Embedded Systems", McGraw Hill, 2014.

3. Ajay V Deshmukh, "Microcontroller Theory And Applications ", Tata Mcgraw Hill, 2017

MULTIDISCIPLINARY MINOR (EMBEDDED WITH BASIC DEGREE)

Minor in Mechanical Engineering: (Offered to CE, CSE and ECS)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
	Elements of Mechanical Engineering	L	Т	Р	L	Т	Р	Total	
		2	-	-	2	-	I	2	
25MDMME1		Examination Scheme							
			ISE1	MSE	ISE2	ESE]	otal	
		Theory	20	30	20	30		100	

Pre-requisite Course Codes	None	
	CO1	Understand the basic concepts of force systems, resultant force, and equilibrium.
	CO2	Identify different types of engineering materials and their mechanical properties.
Course Outcomes	CO3	Explain the fundamentals of thermodynamics and the first and second laws.
Course Outcomes	CO4	Understand the modes of heat transfer and explain the working of boilers, their types, mountings, and accessories.
	CO5	Explain fluid properties and their significance in fluid mechanics.
	CO6	Explain the layout and working of thermal and hydel power plants, and the significance of renewable energy sources.

Module No.	Unit No.	Topics	Ref	Hrs.
1	1.1	Fundamentals of Engineering Mechanics, Force Systems, Resultant Force, Coplanar Concurrent Force System, Numerical on Concurrent Force System Only. Non-Concurrent Coplanar Force System: Moment of Force, Varignon's Theorem (Theory Only)	1	4
	1.2	Concept of Equilibrium, Free Body Diagram, Numerical on lamis theorem	1	2
2	2.1	Engineering Materials: Scope and Importance, Materials Overview, Mechanical Properties, Stress-Strain Diagram	2	4
3	3.1	Basics of Thermodynamics, Zeroth Law, First Laws: (No numerical)	3	2
	3.2	Second Law of Thermodynamics: Comparison of Carnot Cycle and Rankine Cycle	3	2
4	4.1	Introduction to Heat Transfer, Conduction, Convection, Radiation (Theory Only)	4	2
	4.2	Boilers: Types, Boiler Mountings and accessories	4	2
5	5.1	Fundamentals of Fluid Mechanics, Properties of Fluids, Bernoulli's Equation (Only Theory)	5	2

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

			~ (),	
(Autonomou	is College af	ffiliated to	University	of Mumbai)

	5.2	Aerofoil theory	5	2
	6.1	Introduction to Power Plant Engineering: Layouts of Thermal power plant, Hydel Plant and Gas Turbine Power Plant, Comparative Study	6	2
6	6.2	Renewable Energy Sources: Solar, Wind, and Hydropower. Biomass & Geothermal: Energy from organic waste and Earth's heat	6	2
		Total		26

Course Assessment:

Theory:

<u>ISE-1:</u>	Quiz (20 Marks)
ISE-2:	Quiz (20 Marks)
MSE:	90 minutes of written examination based on 50% syllabus (30 Marks)
ESE:	90 minutes of written examination based on the remaining syllabus covered after
	MSE (30 Marks)

Recommended Textbooks:

- 1. Engineering Mechanics S. S. Bhavikatti, New Age International Publishers (For Module 1: Fundamentals of Engineering Mechanics)
- 2. Strength of Materials R. K. Bansal, Laxmi Publications (For Module 2: Engineering Materials, Stress-Strain)
- 3. Fundamentals of Thermodynamics Sonntag, Borgnakke, Van Wylen, Wiley India (For Module 3: Basics of Thermodynamics)
- 4. Heat and Mass Transfer J.P. Holman, McGraw Hill (For Module 4: Heat Transfer & Boilers)
- 5. Fluid Mechanics and Hydraulic Machines R. K. Bansal, Laxmi Publications (For Module 5: Fluid Mechanics & Aerofoil Theory)
- 6. Power Plant Engineering P.K. Nag, McGraw Hill (For Module 6: Power Plant Engineering & Renewable Energy)

Course Code	Course Name		ing Sch rs/week		Credits Assigned			
		L	Т	Р	L	Т	Р	Total
		2	-	-	2	-	-	2
25MDMME2 Manufacturing Examination S					Examination Scheme			
	Engineering		ISE1	MSE	ISE2	ESE	Г	otal
		Theory	20	30	20	30		100

Pre-requisite Course Codes	None	
	CO1	Identify and differentiate between various manufacturing processes.
	CO2	Explain different types of cutting off machines and their applications.
Course Outcomes	CO3	Understand the different parts of lathe machine and lathe machine operations.
	CO4	Have knowledge of different types of drilling machines and operations.
	CO5	Describe types of milling operations and their differences.
	CO6	Explain the principles of grinding operations.

Module No.	Topics	Ref	Hrs.
1	Definition and need of various manufacturing processes. Classification of various manufacturing processes based on chip-less and chip-removal processes.	1, 2	04
2	Types of circular saws, Band saw, Power hacksaw, Friction saw, Abrasive cutting off machines. Advantages, Limitations, and Applications of different types of cutting off machines.	1, 2	04
3	Descriptions and functions of lathe parts. Lathe specifications, Lathe operations, and Taper turning. Single point cutting tool nomenclature. Work and tool holding devices & accessories.	1, 2	06
4	Drilling operations. Types of Drilling machines. Drill nomenclature. Work and tool holding devices. Deep hole drilling and Boring machines.	1, 2	04
5	Types of milling operations and their difference. Milling parameters. Types of milling machines. Types of Milling cutters.	1, 2	04
6	Principle of grinding. Types of grinding machines and operations. Grit, grade, and structure of grinding wheels. Balancing of grinding wheels. Truing, dressing, and shaping of grinding wheels.	1, 2	04
	Total		26

Course Assessment:

Theory:

e	
<u>ISE-1:</u>	Quiz (20 Marks)
ISE-2:	Quiz (20 Marks)
MSE:	90 minutes of written examination based on 50% syllabus (30 Marks)
ESE:	90 minutes of written examination based on the remaining syllabus covered after
	MSE (30 Marks)

Recommended Textbooks:

- 1. *Elements of Workshop Technology:* Machine Tools (Volume 2) by S. K. Hajra Choudhary, A. K. Hajra Choudhary, Nirjhar Roy, Media promoters 15th Edition (2023).
- 2. *A Course in Workshop Technology Vol. II (Machine Tools)* by B. S. Raghuwanshi, Dhanpat Rai & Co. (2015).

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
	Product Design and Development	2	-	-	2	-	-	2
25MDMME3		Examination Scheme						
			ISE1	MSE	ISE2	ESE	Т	otal
		Theory	20	30	20	30	1	00

Pre-requisite	Machi	ne Design				
Course Codes						
	CO1	Describe the process of product design & development.				
	CO2	Employ engineering, scientific, and mathematical principles to develop and execute a design project from a concept to a				
		finished product.				
	CO3	Apply the principles of DFMA and other DFX principles in				
Course Outcomes		product design.				
Course Outcomes	CO4	Analyze products based on ergonomics and aesthetic aspects.				
	CO5	Apply value engineering and software solutions in product				
		design.				
	CO6	Illustrate various modern approaches like concurrent				
		engineering, product life cycle management, robust design,				
		rapid prototyping / rapid tooling.				

Module No.	Unit No.	Topics	Ref.	Hrs.
1	1.1	Introduction: Definition of product design, Various phases in product development and Design, The Design Process, Considerations in product design	1-3	2
	1.2	Planning for products : Establishing markets - market segments - relevance of market research.	1-3	1
2	2.1	Identifying customer needs: Voice of Customer (VoC), Customer populations, Hierarchy of human needs, Need gathering methods, Establishing engineering characteristics, Competitive benchmarking, Quality Function Deployment (QFD), House of Quality (HoQ), Product design specification, Development of product design with specifications using QFD, Relevant case studies.	1-3	3
3	3.1	The design processes: Descriptive and prescriptive design models, Concept development & evaluation, Pugh's total design activity model	1-3	3

		(Autonomous College affiliated to University of Mun	ıbai)	1
		Conceptual Design: Market research, Generation, Selection		
		and Embodiment of concept, Product Architecture, Customer		
		centric product designing		
	3.2	Creativity: Role of creativity in problem solving, Vertical		1
		and lateral thinking, Brain storming, Synectics, Group		
		working dynamics, Adaptation to changing scenarios in		
		economics, social, cultural and technological fronts,		
		Anticipation of new needs and aspirations.		
4	4.1	Product Ergonomics: Anthropometry, Environmental	1-3	2
		conditions, thermal, noise, vibration, displays, illusions,		
		Psycho and psychological aspects in design, Man-machine		
		information exchange.		
-	4.2	Product Aesthetics: Visual awareness, Form elements in	1-3	1
		context of product design, Concepts of size, shape and		
		texture, Introduction to colour and colour as an element in		
		design, Colour classifications and dimensions of colour,		
		Colour combinations and colour dynamics, Interaction /		
		communication of colours, Psychological aspects of colours,		
		generation of products forms with analogies from nature		
-	4.3	Product Graphics: Graphics composition and layout, Use of	1-3	2
		grids in graphics composition, Study of product graphics and		
		textures.		
		Industrial Design aspects applied in electromechanical design		
		and user interface design.		
5	5.1	Design for Manufacturing and Assembly: Guidelines and	1-3	2
		Methodology, DFA Index, Analysis of assembly		
		requirements, Standardization, Ease of Assembly and		
		disassembly, Modular concepts		
		Concept of Lean Manufacturing and Six Sigma		
-	5.4	Other DFX Principles: Designs for Maintainability, Safety,	1-3	1
		Reliability, Sustainable Design	_	
6	6.1	Value Engineering: Product value and its importance, Value	1-3	1
-		analysis job plan, Steps to problem solving and value		_
		analysis, Value analysis tests, Value Engineering idea		
		generation check list, Material and process selection in value		
		engineering, Cost reduction, case studies and exercises.		
-	6.2	Software Solutions: Use of Computers for drafting,	1-3	3
	0.2	modeling, assembly, detailing, CAM interfacing, Rapid	15	5
		tooling/rapid prototyping.		
-	6.3	Modern Applications: Concurrent Engineering, Robust	1-3	4
	0.3	Design, Additive Manufacturing/Rapid Prototyping, Product	1-5	-
		• • • • • •		
		Life Cycle Management techniques and application areas.		

Course Assessment:

Theory:

ISE-1: Quiz (20 Marks)

ISE-2: Case Study presentation in a group related to any of the following topics: Customer centric product design, Value engineering, Industrial design, PLM, robust design, computer aided design (20 marks)

MSE: 90 minutes 30 Marks written examination based on 50% syllabus

ESE: 90 minutes 30 Marks written examination based on remaining syllabus covered after MSE

Recommended Books:

Text Books:

- 1. Anita Goyal, Karl T Ulrich, Steven D Eppinger, "Product Design and Development," 4th Edition, 2009, Tata McGraw-Hill Education, ISBN-10-007-14679-9.
- 2. Kevin Otto, Kristin Wood, "Product Design," Indian Reprint 2004, Pearson Education, ISBN 9788177588217.
- 3. Product Design and Manufacturing R.C. Gupta, A.K. Chitale PHI, 2011

Reference Books:

- 1. Clive L.Dym, Patrick Little, "Engineering Design: A Project-based Introduction," 3rd Edition, John Wiley & Sons, 2009, ISBN 978-0-470-22596-7.
- 2. George E. Dieter, Linda C.Schmidt, "Engineering Design," 4th Edition, McGraw-Hill International Edition, 2009, ISBN 978-007-127189-9.
- 3. Yousef Haik, T. M. M. Shahin, "Engineering Design Process," 2nd Edition Reprint, Cengage Learning, 2010, ISBN 0495668141.

Links for online NPTEL/SWAYAM courses:

- 1. Product Design and Manufacturing by Prof. J. Ramkumar, Prof. Amandeep Singh | IIT Kanpur <u>https://onlinecourses.nptel.ac.in/noc21_me66/preview</u>
- 2. Product Design and Development by Prof. Inderdeep Singh, IIT Roorkee https://onlinecourses.nptel.ac.in/noc21_me83/preview

MULTIDISCIPLINARY MINOR (EMBEDDED WITH BASIC DEGREE)

Minor in Computer Engineering: (Offered to Mech)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
	Data Structures and Algorithms	1		2	1		1	2
		Examination Scheme						
25MDMCE1			ISE	MSE	ISE	ES	E	Total
		Theory	10	15	10	15	5	50
		Lab	20		30			50

Pre-requisite Course Codes	ESC1	1EC03
	CO1	Explain the fundamental concepts of data structures, algorithm properties and complexity.
Course Outcomes	CO2	Implement various operations of linear data structures.
	CO3	Implement various operations of non-linear data structures.
	CO4	Implement sorting algorithms and drive its complexity.

Module No.	Unit No.	Topics	Ref.	Hrs.
1	1.1	Introduction to Data structure and AlgorithmsComplexityIntroduction to Data Structures, Concept of ADT, Types ofData Structures: Linear and NonlinearDefinition of an Algorithm, Properties of a Good Algorithm,Asymptotic Notations & Complexity Classes, Recursivealgorithms	1,2,4	2
2	2.1	Stack and Queue:Stack:Introduction,Stack asADT,Operations,Implementation using array,Applications of stack.	1,2,3	3
2	2.2	Queue: Introduction, Queue as ADT, Operations, Implementation using array, Circular queue, Applications of queue	1,2,3	2
3	3.1	Linked List: Linked list as an ADT, Singly Linked List, Operation on Singly linked list, Applications of Linked List:	1,2,3	2
4	4.1	Tree: Basic Terminology, Linked Representation of Binary Tree ADT, Traversal of Binary Tree, Binary Search Tree and operations on it. Applications of these binary trees.	1,2, 3	3
5	5.1	Graphs: Basics Terminology, Adjacency List and Adjacency Matrix Representation, Graph traversals BFS and DFS. Applications of Graph	1,2, 3	2
6	6.1	Sorting Techniques: Insertion Sort, Selection sort, Quick sort, Merge sort, derivation of complexity of sorting algorithms	1,2, 4	3
			Total	17

Module No.		Name of the experiment
1	1 2	 Stack ADT a. Implement Stack ADT using array b. Convert Infix to Postfix and evaluate the postfix using Stack ADT
2	3 4	Queue ADTa.Implement Linear Queue ADT using an array.b.Implement Circular Queue ADT using an array.
3	5	Linked List ADTa.Implement Singly Linked List ADT.b.Implement stack and queue using linked list.
4	7	Binary Search Tree a. Implement Binary Search Tree ADT using Linked List
5	8	Graph: Implement a program to represent a graph using an adjacency list or adjacency matrix data structure. And perform breadth-first search (BFS) or depth-first search (DFS) traversal algorithms.
6	9	Sorting Algorithm and its complexity Implement Bubble, Selection, Insertion, Merge and Quick sort
	10	 Mini Project: (Suggested list of Mini Project Topics) (Any One) a. Text Edition Application: Implement a text editor with an undo feature. Every time a change is made to the text, save the previous state. When the user performs an undo operation, last state should be reverted. b. Develop a print job scheduler. Users submit print jobs to the printer, and they are processed in the order they were received. c. Design and implement a music application to manage and organize playlists efficiently. The application should allow users to perform the following operations: Add, Edit, delete and play song, d. Develop a browser history manager using a doubly linked list to efficiently track and navigate through the user's browsing history. The application should facilitate the following functionalities: Navigation forward and backward, Add page, remove page, search page, display history etc. e. Develop a word dictionary application to efficiently store and retrieve words and their definitions. The application should provide the following functionalities: Insertion, deletion, search, update etc. f. Given a network of cities connected by roads with different weights representing distances. Visit each city exactly once and print the sequence of all the cities visited.

Course Assessment:

Theory:

ISE-1: (10 Marks)-Activity: Regular Quizzes of 10 Marks

ISE-2: (10 Marks)-Activity: Programming Assignment of 10 Marks

MSE: One hour 15 Marks written examination based on 50% syllabus

ESE: One hour 15 Marks written examination based on remaining 50% syllabus

Lab:

ISE-1: (20 Marks)-Practical Exam after completing first five experiments **ISE-2:** Activity: Mini Project (**10 Marks**), Remaining Experiments Assessment (**10 marks**)

Reference Books:

1. Data Structures using C and C++ by Yedidyah Langsam, Moshe J. Augenstein, Aaron M.Tenenbaum, Second Edition.

2. Data Structures using C, Reema Thareja, Third Edition.

3. Data Structures and Program Design in C++, Robert L. Kruse, Alexander J. Ryba Prentice- Hall India.

4. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, The MIT Press, 4th Edition, 2022.

Further Reading:

1. Data Structures and Algorithm in Java, Goodrich and Tamassia, John Wiley and Sons, Sixth Edition 2014.

2. Data Structures and Pseudocode approach with C, 2nd Edition by Richard F. Gilberg & amp; Behrouz A. Forouzan

Online Resources:

- 1. https://nptel.ac.in/courses/106/102/106102064/
- 2. https://www.coursera.org/specializations/data-structures-algorithms
- 3. https://visualgo.net
- 4. www.leetcode.com
- 5. www.hackerrank.com
- 6. https://www.youtube.com/playlist?list=PLDV1Zeh2NRsB6SWUrDFW2RmDotAfPbeHu

Course Code	Course Name		ing Sch rs/week		Credits Assigned			
		L	Т	Р	L	Т	Р	Total
		1		2	1		1	2
25MDMCE2	Database Management Systems	Examination Scheme						
25IVIDIVICE2			ISE1	MSE	ISE2	ESE	Т	otal
		Theory	10	15	10	15		50
		Theory	10	15	10	15		30

Pre-requisite Course		
Codes		
	CO1	Explain the basic concepts and the applications of
		database management systems.
	CO2	Design ER/EER diagrams for real-world scenario.
	CO3	Convert ER/EER diagram to relational model and
		write relational algebra queries.
Course Outcomes	CO4	Formulate SQL queries to retrieve, manipulate,
		and analyze data stored in a relational database.
	CO5	Apply the concept of normalization to relational
		database to improve the database design.
	CO6	Describe the concepts of transaction and
		concurrency control.

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Module 1: Introduction To Database Systems	1,2,6	2
	1.1	Characteristics of Database systems		
	1.2	File System Vs. Database systems		
	1.3	Three Schema Architecture and Data Independence		
	1.4	DBMS Architecture, Applocations of DBMS		
2		Module 2: Conceptual Data Modelling using	1,2,6	2
		Entity Relation Diagram		
	2.1	The Entity-Relationship (ER) Model: Entity types, Types		
		of Attributes, Types of Keys		
	2.2	Relationships: Types of Relationships (Unary,		
		Binary, Ternary, N-ary), Constraints on Relationship		
		(Cardinality and Participation)		
	2.3	Extended ER Diagram: Generalization, Specialization,		
		and Aggregation.		
3		Module 3: Relational Model and Relational Algebra	1,2,6	2
	3.1	Introduction to Relational Model: Relational Schema		
		and Concepts of keys.		
	3.2	Mapping the ER and EER Model to the Relational Model		
	3.3	Relational Algebra: Operators and Relational		
		Algebra Queries		
		Module 4: Structured Query Language	1,2	3

		(Autonomous College affiliated to University of Mur	nbai)	
4	4.1	DDL commands: CREATE, ALTER, DROP,		
		TRUNCATE, Integrity constraints: Key constraints,		
		Domain constraints, Referential integrity constraints, and		
		Check constraints		
	4.2	DML Commands: Insert, Update, Delete, WHERE		
		clause, OrderBy clause.		
	4.3	Aggregate Functions, GroupBy – Having clause		
	4.4	SQL Joins, Set operations, Nested queries		
5		Normalization	1,2,4,6	2
	5.1	Pitfalls in Relational Database designs, Concept		
		of Normalization, Function Dependencies.		
	5.2	1NF, 2NF, 3NF, BCNF		
6		Transaction and Concurrency Control	1,2	2
	6.1	Introduction to Transaction, Transaction States,		
		ACID properties, Serial and Concurrent		
		Schedules,		
		Serializability: Conflict and View		
		serializability. Transaction Control		
		Commands (TCL)		
	6.2	Introduction to Concurrency Control: Lock-based		
		protocols, Timestamp-based protocols.		
	•	· · ·	Total	13

Sr.no	Suggested List of experiments	Ref.	Hrs.
1.	Identify the case study and formulate the detailed	1,2,6	1.
	problem statement. Design Entity-Relationship		
	(ER)/Extended Entity-Relationship (EER) Model for the same.		
2.	Map the ER/EER Diagram designed in Experiment 1 into	1,2,6	2.
	relational model and write SQL queries to create all		
	PRIMARY KEY TABLES using DDL commands (Apply the		
	constraints like PRIMARY KEY, NOT NULL, and DOMAIN		
	Constrains)		
3.	Create all FOREIGN KEY tables. Apply Referential Integrity	1,2,5	3.
	constraints.		
4.	Perform operations involving ALTER, DELETE, and UPDATE	1,2,5	4.
	commands on the tables created in Experiment 2 and 3.		
5.	Write SQL queries to implement JOINS and Nested	1,2,5	5.
	queries for tables created in Experiment 2 and 3.		
6.	Write the query for implementing the aggregate functions	1,2,5	6.
	MAX(), MIN(), AVG(), COUNT(), SUM() with Group by		
	and Having clause for the previously created tables.		
7.	Implement PL/SQL and TRIGGERS for the previously created	1,2,5	7.
	tables.		
8.	Create Views and Indices for the previously created tables.	1,2,5	8.
	Mini project/presentation/Group activity/ Simulation using		
	modern tools		

Course Assessment:

Theory:

ISE-1: Activity: Quiz and assignments 10 Marks ISE-2: Two hours 10 Marks Activity: Article Discussion, Quiz and Assignments

Outcome: Reflective Journal

MSE: One hour 15 Marks written examination based on 50% syllabus **ESE:** One hour 15 Marks written examination based on remaining 50% syllabus

Lab:

ISE:

1. ISE-1 will be conducted for four or 50% of experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2

a. Remaining Four experiments or 50% of experiments. Continuous pre-defined rubricsbased evaluation for 20 marks.

b. Simulation using modern tools to solve the given problem statement for 10 marks/Mini project

Recommended Books:

- 1. Korth, Slberchatz, Sudarshan, Database System Concepts, 6th Edition, McGraw Hill
- 2. Elmasri and Navathe, Fundamentals of Database Systems, 5th Edition, Pearson education.
- 3. Raghu Ramkrishnan and Johannes Gehrke, Database Management Systems, TMH.
- 4. G. K. Gupta, Database Management Systems, McGraw Hill., 2012.
- 5. <u>SQL Tutorial (w3schools.com)</u>
- Course: Database Management System By Prof. Partha Pratim Das, Prof. Samiran Chattopadhyay IIT Kharagpur : https://onlinecourses.nptel.ac.in/noc22_cs91/preview

Course Code	Course Name		ing Sch rs/week		Credits Assigned			
	Microcontrollers and Applications	L	Т	Р	L	Т	Р	Total
		2			2			2
25MDMCE3		Examination Scheme						
			ISE1	MSE	ISE2	ESE	T	otal
		Theory	20	30	20	30	1	.00

Pre-requisite Course	Digital	Digital Electronics,					
Codes	C prog	2 programming					
	At the l	the End of the course students will be able to:					
	CO1	Explain the fundamental concepts of microcontrollers					
	CO2	Develop programming skills for microcontrollers using					
Course Outcomes		Embedded C concepts					
Course Outcomes (CO)	CO3	Program various on-chip components of microcontrollers					
(00)	CO4	Interface various devices to the 8051 microcontroller					
	CO5	Evaluate various enhancements in modern microcontrollers					
		based on the ARM CORTEX cores					

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		8051 Microcontroller Architecture		
	1.1	Introduction to the concepts of Microprocessors and	1,2	
		Microcontrollers		6
	1.2	Concept of Buses, Read/write operations, T state, Machine	1,2	
		cycle and Instruction cycle		
	1.3	8051 Architecture	1,2	
	1.4	8051 Memory organization	1,2	
	1.4	RISC and CISC Concepts, Harvard and Von Neumann	1,2	
		Architectures		
	1.5	Overview of various available Microcontrollers,	1,2	
		Applications of Microcontrollers		
2		Programming the 8051		4
	2.1	Assembly language programming, Addressing modes	1,2	
	2.2	Embedded C programming concepts: Data types, Modifiers,	1,2	
		Qualifiers, Functions, Macros, Interrupt service routines.		
3		8051 Internal Hardware		6
	3.1	I/O port programming	1,2	
	3.2	Timers/Counters programming	1,2	
	3.3	Serial port programming	1,2	
	3.4	Interrupts programming	1,2	

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

	anabtana, Danai	a (W), manoai	100 00
(Autonomous Coll	ege affiliated to	University of Mu	umbai)

	3.5	Low power modes of the 8051	1,2	
4		8051 Interfacing		
	4.1	Display interfacing: LED, 16x2 generic alphanumeric LCD display.	1	6
	4.2	Analog devices interfacing: 8-bit ADC, 8-bit DAC, temperature sensor (LM35)	1	
	4.3	Motor interfacing: Relay, DC motor (speed control using PWM), Stepper motor and Servo motor.	1	
5		ARM Cortex microcontrollers		4
	5.1	Introduction to the ARM Cortex family	3	
	5.2	Salient features of ARM Cortex cores: RISC design, Operating modes and states, NVIC, Low power modes	3	
			Total	26

Course Assessment:

ISE-1:

Embedded C programming: Arithmetic /Logical operations, I/O port, Timer/Counter, Serial port [20 Marks]

ISE-2:

Embedded C programming: LCD Interfacing, Stepper motor interfacing, DC motor interfacing, Sensor Interfacing [20 Marks]

Note: In ISE 2, Interfacing with Arduino boards can be introduced

MSE: 30 Marks 90 minutes written examination based on 50% syllabus **ESE**: 30 Marks 90 Minutes written examination based on remaining syllabus after MSE

Recommended Books

1.M.A.Mazidi, J.C.Mazidi, Rolin D. McKinlay,"The 8051 Microcontroller and Embedded Systems

Using Assembly and C", Pearson Education, Second Edition, 2007.

2. Kenneth J. Ayala, "The 8051 Microcontroller", Cengage Learning India Pvt. Ltd, Third Edition,

2005.

3.Joseph Yiu, "The Definitive guide to ARM CORTEX-M3 & CORTEX-M4 Processors", Elsevier, 2014, 3rd Edition.

Reference Books:

1.Raj Kamal, "Microcontrollers: Architecture, Programming, Interfacing and System Design", Pearson Education, 2009.

Manish K Patel, "The 8051 Microcontroller Based Embedded Systems", McGraw Hill, 2014.
 Ajay V Deshmukh, "Microcontroller Theory And Applications ", Tata Mcgraw Hill, 2017

30

MULTIDISCIPLINARY MINOR (EMBEDDED WITH BASIC DEGREE)

Minor in Electronics Engineering: (Offered to Mech)

Course Code	Course Name	Course Name (Hrs/week)			Credits Assigned				
		L	Т	Р	L	Т	P Total		
	Signals and	2			2	2			
25MDMEL1	System	Examination Scheme							
			ISE1	MSE	ISE2	ESE	Tot		
		Theory	20	30	20	30	100		

Pre-requisite	Basic co	oncepts of Mathematics
Course Codes		
	CO1	Identify and differentiate between continuous and discrete time signals and systems
	CO2	Develop input output relationship for LTI systems
Course Outcomes	CO3	Apply the concept of Laplace transform and understand conversion from time domain to frequency domain for continuous time systems.
Outcomes	CO4	Apply the concept of Z transform and comprehend conversion from time domain to frequency domain for discrete time systems.
	CO5	Discuss various applications of signals and system

Module No.	Unit No.	Topics	Ref.	Hrs.
		Introduction to Signals and Systems	1,2,3,4	4
1	1.1	 Introduction to Signals: Definition, Basic Elementary signals - exponential, sine, step, impulse, ramp, rectangular, triangular. Operations on signals. Classification of Signals: Analog and discrete time signals, even and odd signals, periodic and non-periodic signals , deterministic and non-deterministic signals, energy and power signals. Arithmetic Operations on Signals, Time Shifting, Time Scaling, Time Reversal of Signals 		
	1.2	Systems and Classification of systems: System Representation, continuous time and discrete systems, system with and without memory, causal and non-causal system, linear and nonlinear system, time invariant and time variant system, stable system		
		Time Domain Analysis of Continuous and Discrete Systems	1,2,3,4	6
2	2.1	Properties of Linear Time Invariant (LTI) systems, Impulse and Step Response		

	5.3	Robotics and IoT Applications		
	5.2 5.3	Computer Science and IT Applications Mechanical and Civil Engineering Applications		
5	5.1	Electrical and Electronics Engineering Applications		
	<u> </u>	Applications of Signals and System		4
		response of a system		
		transfer function, causality and stability of systems, Total		
	4.2	Analysis of discrete time LTI systems using <i>z</i> -Transform : Transfer Function, plotting Poles and Zeros of a		
	- 12	Transform. Inverse z-Transform: Partial Fraction method only.		
		properties, Standard z-transform pairs, one sided z-		
т	1.1	sequences, Concept of Region of Convergence, <i>z</i> -Transform		
4	4.1	Need of <i>z</i> -Transform, <i>z</i> -Transform of finite and infinite duration	1,2,3,4	0
	+	Total response of a system.z-Transform and Discrete time LTI systems	1,2,3,4	6
		Transform: Causality and stability of systems in <i>s</i> -domain,		
	3.2	Analysis of continuous time LTI systems using Laplace		
		Laplace Transform, inverse Laplace Transform.		
5	5.1	Convergence, Properties of Laplace Transform, , unilateral		
3	3.1	Laplace Transform and Continuous time LTI systemsNeed of Laplace Transform, Concept of Region of	1,2,3,4	0
	2.3	Properties of Convolution Integral/Sum	1024	
		for Analysis of LTI Systems		
	2.2	Use of Convolution Integral and Convolution Sum and Correlation		

Course Assessment:

Theory:

ISE-1:

Activity: Quiz and assignments 20 Marks **ISE-2:** Activity: Quiz and Assignments 20 Marks

MSE: 30 Marks written examination based on 50% syllabus (Duration:90 minutes) **ESE:** 30 Marks written examination based on remaining syllabus after MSE

(Duration:90 minutes)

Recommended Books:

- 1. Tarun Kumar Rawat, "Signals and Systems", Oxford University Press, 2016.
- 2. A. Nagoor Kani, "Signals and Systems", Tata McGraw-Hill Education, 2014.
- 3. Alan V. Oppenhiem, Alan S. Willsky and S. Hamid Nawab, Signals and Systems, Prentice-Hall of India, Second Edition, 2002.
- 4. Simon Haykin and Barry Van Veen, Signals and Systems, John Wiley and Sons, Second Edition, 2004.

Course Code	Course Name	Teach (H	ne	(Credits A	Assigned			
		L	Т	Р	L	Т	Р	Total	
		2		2	2		1	3	
25MDMEL2	Digital Electronics		Ex	aminati	ion Sch	eme			
			ISE1	MSE	ISE2	ESE]	fotal	
		Theory	20	30	20	30		100	
		Lab	20	—	30	_		50	

Pre-requisite	Course	e Codes Binary number system and codes, binary arithmetic
	After th	he successful completion students should be able to
Course	CO1	Compare TTL and CMOS families w.r.t. their characteristic parameters
Outcomes	CO2	Construct combinational circuits using given MSI devices.
	CO3	Apply the knowledge of flip-flops and MSI devices to design sequential circuits.
		Analyze the given sequential circuits to identify the state transitions and race conditions.
	CO5	Implement the given logic function using programmable logic devices.

Module	Unit	Topics	Ref	Hrs.
No.	No.			
		Implementation of Logic functions		
	1.1	Logic gates, Implementation of functions using basic gates and using	1,2,	4
1		Universal gates	3,4	
1	1.2	Formulating a logic function, Sum of Products (SOP), Product of	1,2,	
		Sums (POS), Minimization using Boolean Algebra, De Morgan's	3,4	
		Theorems, Minimization using Karnaugh map (upto 4 variables),		
		Quine-McClusky Technique		
		Logic Families		
	2.1	Characteristic parameters of logic families: Voltage and Current	1,2,	3
2		parameters, Fan in, Fan out, Noise margin, Power Dissipation,	3,4	
		Propagation Delay		
	2.2	TTL NAND gate and its transfer characteristics, CMOS inverter		
		and transfer characteristics, comparison of TTL and CMOS logic		
		families		
		Combinational Circuit Design		
	3.1	Full adders, ripple carry adders, Carry Look ahead Adders, Binary	1,2,	5
3.		Subtractors	3,4	
5.	3.2	Multiplexer/ Demultiplexer, Encoders, Priority Encoders, Parity		
		Generators, Code Converters, comparator, ALU		
	3.3	Static and dynamic hazards in combinational circuits		
		Elements of Sequential Circuit		
4.	4.1	Storage elements: Latches and Flip-flops (S-R, J-K, D, T Flip- flop),	1,2,	5
4.		Master Slave Flip-flop	3,4	
	4.2	Synchronous and Asynchronous counters, Shift registers and their	1,2,	1
		applications	3,4	1

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

FI. Agnei Asilia	in, Danu	stanu, Dan	iuia (w)	, mumbai	- +00 000
(Autonomous	College	affiliated	to Univ	ersitv of N	Iumbai)

	Analysis of Sequential circuits	
5.1	Analysis of Moore and Mealy type Finite State Machines (FSM), State Reduction	1,2, 3,4
5.2	Introduction to Asynchronous Sequential circuits, Essential hazards in asynchronous sequential circuits	1,2, 3,4
	Programmable devices	
	Structure of Programmable Logic Devices (PLDs), Function implementation with PAL and PLAs, Introduction to CPLD and FPGA	1,2, 3,4
		'otal

Laboratory Experiments:

Sr. No.	Title of experiment	Module	Ref
1.	To implement the combinational logic for a given function using basic gates and Universal gates.	1	1,2
2.	To simulate a CMOS inverter and to plot the transfer characteristics (using SPICE)	2	1,2
3.	a. To verify the function of 8 bit binary adder IC7483 b. To implement a BCD adder using IC7483	3	1,2
4.	a. To implement the function of 8 bit Multiplexer using IC74151 b. To implement a given 4 variable Boolean function using Multiplexer IC 74151	3	1,2
5.	To implement an 8 bit binary comparator using IC 7485	3	1,2
6.	a. To implement a Mod n asynchronous counter using flip-flops b. To implement a Mod n counter using IC 74163	4	1,2
7.	Implementation of a combinational circuit using reconfigurable devices a. To write an HDL code for the parity generator and simulate verify the operation by simulation. b. To implement the HDL code on FPGA and verify the operation.	6	7,8
8.	Implementation of a sequential circuit using reconfigurable devices a. To write an HDL code for a 4 bit shift register and verify the operation by simulation. b. To implement the HDL code on FPGA and verify the operation.	6	7,8

(Autonomous College affiliated to University of Mumbai)

Course Assessment:

Theory:

ISE-1: 20 marks 1. Quiz/ crossword -10 Marks

2. Open book test -10 marks

ISE-2: 20 Marks

1. Case study -10 Marks

2. Oral examination -10 marks

MSE : 90 Minutes 30 Marks written examination based on 50% syllabus ESE : 90 Minutes 30 Marks written examination based on remaining syllabus after MSE

Lab:

40 Marks (08 experiments of 05 marks each) + 10 Marks (activity based) = 50 Marks

1. ISE-1 will be conducted for four experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2

- a. Four experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.
- b. Activity based: Testing and debugging activity for 10 marks

Recommended Books:

- 1. John F. Wakerly, "Digital Design Principles and Practice"- Pearson Publications, 4th edition
- 2. Morris Mano, Michael D. Ciletti, "Digital Design with introduction to Verilog HDL" Pearson, 5th edition
- 3. John M. Yarbrough, "Digital Logic Applications and Design" Thomson Publications
- 4. Stephen Brown and ZvonkoVranesic, "Fundamentals of digital logic design with Verilog design", McGraw Hill, 3rd Edition
- 5. Roth and Kinney, "Fundamentals of Logic Design", Cengage learning,7th edition
- 6. William I.Fletcher, "An Engineering Approach to Digital Design", PrenticeHall of India
- 7. J. Bhaskar, A Verilog HDL Primer, Third Edition, Star Galaxy Publishing
- 8. Sameer Palnitkar, "Verilog HDL: A guide to digital design and synthesis"

Online References:

https://archive.nptel.ac.in/content/storage2/courses/106108099//Digital%20Systems.pdf

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
		2			2			2
25MDMEL3	Microcontrollers and Applications		Ex	xaminat	ion Sch	eme		
			ISE1	MSE	ISE2	ESE	Т	otal
		Theory	20	30	20	30	1	.00

Pre-requisite Course	Digital	Digital Electronics,							
Codes	C programming								
	At the l	End of the course students will be able to:							
	CO1	Explain the fundamental concepts of microcontrollers							
	CO2	Develop programming skills for microcontrollers using							
Comme Orteore		Embedded C concepts							
Course Outcomes (CO)	CO3	Program various on-chip components of microcontrollers							
(CO)	CO4	Interface various devices to the 8051 microcontroller							
	CO5	Evaluate various enhancements in modern microcontrollers							
		based on the ARM CORTEX cores							

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		8051 Microcontroller Architecture		
	1.1	Introduction to the concepts of Microprocessors and	1,2	
		Microcontrollers		6
	1.2	Concept of Buses, Read/write operations, T state, Machine	1,2	
		cycle and Instruction cycle		
	1.3	8051 Architecture	1,2	
	1.4	8051 Memory organization	1,2	
	1.4	RISC and CISC Concepts, Harvard and Von Neumann	1,2	
		Architectures		
	1.5	Overview of various available Microcontrollers,	1,2	
		Applications of Microcontrollers		
2		Programming the 8051		4
	2.1	Assembly language programming, Addressing modes	1,2	
	2.2	Embedded C programming concepts: Data types, Modifiers,	1,2	
		Qualifiers, Functions, Macros, Interrupt service routines.		
3		8051 Internal Hardware		6
	3.1	I/O port programming	1,2	
	3.2	Timers/Counters programming	1,2	
	3.3	Serial port programming	1,2	
	3.4	Interrupts programming	1,2	

•		,	otana, sana				
(4	Autonomous	College	affiliated to	University	y of Mu	ımbai)

	3.5	Low power modes of the 8051	1,2	
4		8051 Interfacing		
	4.1	Display interfacing: LED, 16x2 generic alphanumeric LCD display.	1	6
	4.2	Analog devices interfacing: 8-bit ADC, 8-bit DAC, temperature sensor (LM35)	1	
	4.3	Motor interfacing: Relay, DC motor (speed control using PWM), Stepper motor and Servo motor.	1	
5		ARM Cortex microcontrollers		4
	5.1	Introduction to the ARM Cortex family	3	
	5.2	Salient features of ARM Cortex cores: RISC design, Operating modes and states, NVIC, Low power modes	3	
			Total	26

Course Assessment:

ISE-1:

Embedded C programming: Arithmetic /Logical operations, I/O port, Timer/Counter, Serial port [20 Marks]

ISE-2:

Embedded C programming: LCD Interfacing, Stepper motor interfacing, DC motor interfacing, Sensor Interfacing [20 Marks]

Note: In ISE 2, Interfacing with Arduino boards can be introduced

MSE: 30 Marks 90 minutes written examination based on 50% syllabus **ESE**: 30 Marks 90 Minutes written examination based on remaining syllabus after MSE

Recommended Books

1.M.A.Mazidi, J.C.Mazidi, Rolin D. McKinlay,"The 8051 Microcontroller and Embedded Systems

Using Assembly and C", Pearson Education, Second Edition, 2007.

2. Kenneth J. Ayala, "The 8051 Microcontroller", Cengage Learning India Pvt. Ltd, Third Edition,

2005.

3.Joseph Yiu, "The Definitive guide to ARM CORTEX-M3 & CORTEX-M4 Processors", Elsevier, 2014, 3rd Edition.

Reference Books:

1.Raj Kamal, "Microcontrollers: Architecture, Programming, Interfacing and System Design", Pearson Education, 2009.

2. Manish K Patel, "The 8051 Microcontroller Based Embedded Systems", McGraw Hill, 2014.

3. Ajay V Deshmukh, "Microcontroller Theory And Applications ", Tata Mcgraw Hill, 2017

DOUBLE MINOR (DM) (OPTIONAL MINOR IN EMERGING AREAS)

VLSI Design and Verification (offered to Computer Engg. and CSE)

Course Code	Course Name	Teaching Scheme (Hrs/week)Credits Assigned						ed
		L	Т	Р	L	Т	Р	Total
		2	2		2	2		4
25DM11	VI SI Dogign Flow		E	Examina	ation Sc	heme		
25DM11	VLSI Design Flow		ISE1	MSE	ISE2	ESE	Т	otal
		Theory	20	30	20	30	1	00
		Tut	20		30			50

Pre-requisit	e Cour	se Codes
	CO1	Explore evolution of VLSI and VLSI Design flow
Course	CO2	Explain MOSFET Characteristics and CMOS Technology
Outcomes	CO3	Write Verilog code for Digital Circuits using Industry-Standard EDA tools
	CO4	Explore emerging trends in VLSI CAD

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Introduction to VLSI Technology	1, 2	4
	1.1	Evolution of VLSI, Moore's Law, current trends, applications,		
		VLSI Design flow, EDA tools		
	1.2	VLSI design methodologies: Full-custom, Semi-custom,		
		Standard-cell		
	1.3	India Semiconductor Industry and GoI policies		
2		MOS Transistor Theory	1	9
	2.1	MOSFET structure and operation, threshold voltage, Scaling		
	2.2	Concept of Inverter and types		
		CMOS Inverter: DC characteristics, voltage transfer		
		characteristics		
		CMOS NAND and NOR schematic		
	2.3	Noise margins, power dissipation in CMOS circuits		
3		Verilog HDL Basics	2	6
	3.1	Need of HDL, Types of HDL		
		Concept of design module and testbench		
	3.2	Verilog Program Structure, Language constructs, Verilog		
		datatypes, Operators etc.		
4		Design Modeling Styles and Emerging Trends	2	
	4.1	Design Abstractions, Behavioral, Data flow, Gate level and		7
		Switch level modeling		
	4.1	Low-power VLSI design		
		AI/ML-driven VLSI design automation		
			Total	26

Recommended Books:

- 1. Sung-Mo (Steve) Kang, Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis & Design", McGraw-Hill Education
- 2. Samir Palnitkar "Verilog HDL: A Guide to Digital Design and Synthesis", Pearson
- 3. J. Bhasker, "Verilog HDL Synthesis, A Practical Primer".
- 4. S. H. Gerez, "VLSI Physical Design Automation: Theory and Practice"
- 5. Michel D. Ciletti "Advanced Digital Design with Verilog HDL", 2nd Ed., PHI, 2009
- 6. Douglas J. Smith, "Verilog Designer's Library"
- 7. Some useful websites: AMD Xilinx, EDA Playground and ASIC World
- 8. Online Resources: NPTEL course on CAD for VLSIhttps://archive.nptel.ac.in/courses/106/106/106106088/ https://www.coursera.org/learn/vlsi-cad-logic http://www.facweb.iitkgp.ac.in/~isg/CAD/

Theory Assessment:

ISE-1: Article Reflection: 20 Marks

MSE: 90 minutes 30 Marks written examination based on 50% syllabus

ISE-2: Quiz: 20 Marks

ESE: 90 minutes 30 Marks written examination based on remaining syllabus after MSE

Tutorial Assessment:

Simulation experiments using EDA Playground and MATLAB HDL Coder

Course Code	Course Name	Teaching Scheme (Hrs/week)Credits Assigned						
		L	Т	Р	L	Т	Р	Total
	FPGA Programming	2	2		2	2		4
25DM12		Examination Scheme						
25DN112			ISE1	MSE	ISE2	ESE	Т	otal
		Theory	20	30	20	30	1	00
		Tut	20		30			50

Pre-requisit	e Cour	se Codes
	CO1	Explain FPGA and SoC AMD Architecture
Course	CO2	Write Verilog HDL code for the given FSM
Outcomes	CO3	Apply logic synthesis, optimization techniques and perform timing analysis
	CO4	Develop Real-World FPGA Applications.

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Introduction to FPGA Technology	1,6	6
	1.1	Overview of FPGA design flow		
		Comparison with ASIC, FPGA and SoC		
	1.2	FPGA architecture: 7-Series and UltraScale AMD FPGA		
	1.3	Introduction to Zynq and Zybo SoC		
	1.4	Applications of FPGA and SoC		
2		Verilog HDL for FSM	3-5	7
	2.1	Blocking vs. Non-blocking assignments, Latch inference and		
		unintended issues, Timing constraints, setup & hold time, clock		
		skew, Synthesis-friendly coding practices		
	2.2	Designing finite state machines (FSMs)		
3		Logic Synthesis, Optimization and Physical Design	3-5	8
		Automation		
	3.1	Introduction to logic Synthesis, Logic synthesis of Verilog		
		Construct, Examples of synthesis.		
	3.2	Design constraints: Area, Delay and Power, Optimization in		
		synthesis. Post Synthesis verification		
	3.3	Physical Design Automation: Partitioning, Placement, and		
		Floorplanning.		
		Routing algorithms, Clock tree synthesis (CTS), Power planning		
		and optimization		
4		Case Studies	1-2	
	4.1	Use of FPGA in real world applications for various sectors e.g.		5
		product design, healthcare, automotive, test and measurement		
		etc.		
			Total	26

Recommended Books:

- 1. Wayne Wolf, "FPGA-Based System Design" Prentice Hall
- 2. David Romano, "Make: FPGA: Programming and Interfacing".
- 3. Samir Palnitkar "Verilog HDL: A Guide to Digital Design and Synthesis", Pearson
- 4. J. Bhasker, "Verilog HDL Synthesis, A Practical Primer".
- 5. Michel D. Ciletti "Advanced Digital Design with Verilog HDL", 2nd Ed., PHI, 2009
- 6. Some useful websites: AMD Xilinx, EDA Playground and ASIC World

Theory Assessment:

ISE-1: Article Reflection: 20 Marks

MSE: 90 minutes 30 Marks written examination based on 50% syllabus

ISE-2: Quiz: 20 Marks

ESE: 90 minutes 30 Marks written examination based on remaining syllabus after MSE

Tutorial Assessment:

- 1. Experiment-1: FPGA Implementation of FSM (10 Marks)
- 2. Experiment-2: On contents of Chapter-3 (10 Marks)
- 3. Experiment-3: On contents of Chapter-3 (10 Marks)
- 4. Mini-Project (20 Marks)

DOUBLE MINOR (DM) (OPTIONAL MINOR IN EMERGING AREAS)

Internet of Things (offered to Comp, CSE and Mech)

Course	(Course	nomous Col Name	Teach	ing Sch	eme		Credits A		h.
Code		, ourse		,	rs/week	ŕ		, , , , , , , , , , , , , , , , , , , 		
				L	Т	Р	L	Т	Р	Total
				2	2		2	2		4
25DM21	Coma				I	Examina	ation S	cheme		
25DM21	Senso	ors and	Actuators		ISE1	MSE	ISE2	ESE	Total	
				Theory	20	30	20	30	10	00
				Tut.	20		30			0
Due neguicite	Course	Flo	ctronic Device			vice VI 9		n		-
Pre-requisite	Course	Lie		es, Allalog	Liechoi	nes, v L.	SI Desig	11		
Codes		C0	1 Underste	nd the con	ont of a		d active	tomand	thain	
		CO	character	nd the cond	cept of s	ensors a	ia actua	lors and	unen	
		CO		nd the prac	tical apr	roach ir	design	of techno	logy be	sed on
				sensors and			uesign		nogy u	iseu on
		CO		rious senso			chnolog	v used i	n desig	ning
Course Out	comes			nd actuator		and und t		57 abou 1		
		CO		nt a prototy		emonstr	ating the	applicat	ion of t	he
			sensors	r			8	11		
		CO	5 Demonst	rate proble	m solvin	ig & trou	ibleshoo	ting skill	ls in sen	sor
		and actuator applications								
Module No.	Unit	Topic	s						Ref.	Hrs.
	No.									
1	1.1	Sensor	Classificati	on – Phy	sicals.	Mechan	ical. El	ectrical.	1,2	5
Fundamentals		Sensor Classification – Physicals, Mechanical, Electrical, Chemical, electrochemical						1,2	5	
Sensors and	1.2	Functional unit of sensor: receptor and transducer; Units of					1,2			
Actuators		Measu	rements		-				,	
	1.3		and actuate			•		•	1,2	
			g Electric Ch							
		0	tism; Inducti							
			Temperature		-			al; Heat		
	0.1		er; Light; Dyr					1. 6.	1.0	~
2 Interfecto	2.1	Input Excitation	Characteristi tion Circuits	ics of li	nerrace	Circui	ıs, Am	plifiers,	1,2	5
Interface Electronic	2.2		g to Digita	1 Convert	erc D	irect D	initizati	on and	1,2	-
Circuits	2.2		sing, Bridge				•		1,2	
			ower Sensors	2.1.20100, L	110		, Duit			
	2.3		g and digital f	iltering					1,2	1
3	3.1	,	Occupancy and	<u> </u>	etectors	; Positio	n,		1,2,3	6
Sensors and			cement, and L					orce,	-,-,0	Ĩ
actuators in			and Tactile S							
Different	3.2							1,2,3		
Application			(Correlation							
			red in enginee	•	•	•	• •			
			pe of sensors							
			on of change							
			y say resistan							
	2.2		les of actuator					ю.	100	-
	3.3		tudy of Applie otive, manufa					nc	1,2,3	
			phone, house							
	L	moune	phone, nouse	-noid ilisti	ument s	ucii as W	asining I	nachine		

		(name of various sensors and their usability in each of these		
		applications).		
4	4.1	MEMS-cantilever based sensors and their types such as,	2,3	5
Sensor and		accelerometer, gyroscopes: Structure, material used		
Actuators:		(polysilicon, Silicon etc), working principle, applications.		
Materials and	4.2	Metal oxide semiconductor (nano-particles) based sensors such	2,3	
Technologies		as gas sensors, biomedical sensors, chemical sensors		
		(Structure, material used, working principle, applications)		
	4.3	MEMS-cantilever based sensors and their types such as,	2,3	
		accelerometer, gyroscopes: Structure, material used working		
		principle, Micromotors etc.		
5	5.1	4-20 mA Current Loop, Types of smart Sensors, Limitations of	2,4	5
Smart		single sensor and applicability of Array-based sensor		
Sensors		technology, Electronic-Nose sensors		
Industrial	5.2	HART, Industrial buses such as Profibus, CAN bus, etc. ISA	2,4	
standards for		S82.01, NEMA standards, The International Electro-		
the sensors		Technical Commission (IEC)		
/actuators	5.3	Different Standards, Calibration and compatibility.	2,4	
and its		Knowledge of terms such as accuracy, full scale,		
calibration		hysteresis, resolution, gain error, offset error, SNR etc.		
			Total	26

Course Assessment:

Theory:

ISE-1: Activity: Model making for Sensor/Actuators: 20 Marks
ISE-2: Activity: 1. Standards based Quiz/ crosswords: 10 Marks
2. Article Discussion: Outcome: Reflective Journal: 10 Marks

MSE: 90 minutes 30 Marks written examination based on 50% syllabus **ESE:** 90 minutes 30 Marks written examination based on remaining 50% syllabus

Recommended Books:

- 1. J. Fraden, Handbook of Modern Sensors: Physical, Designs, and Applications, AIP Press, Springer
- 2. D. Patranabis, Sensors and Transducers, PHI Publication, New Delhi
- 3. Mechatronics- Ganesh S. Hegde, Published by University Science Press (An imprint of Laxmi Publication Private Limited).
- 4. Metal Oxide Nanostructures as Gas Sensing Devices (Series in Sensors Book 7), G. Eranna (Author), Publisher: CRC Press

Online Resources:

1. Website link: <u>www.nptel.ac.in</u>

ISE 1:

- 1. Experiment no.1. Classification of different sensors (Analog / Digital)
- 2. Experiment no. 2. Actuators and drivers required
- 3. Experiment no.3. Design of KRC filters (Active 1st and 2nd order)
- 4. Experiment no.4. Design of 4-20mA Current loop.
- 5. Experiment no.3. Design of Instrumentation Amplifier for a given gain

ISE 2:

Activity based on Standards and Calibration.

Course Code	Course Name	Teaching Scheme (Hrs/week)Credits Assigned					ed	
		L	Т	Р	L	Т	Р	Total
		2	2	-	2	2	-	4
25DM22	Fundamentals of IoT	Examination Scheme						
25DN122			ISE1	MSE	ISE2	ESE	Total	
		Theory	20	30	20	30	100	
		Tut	20		30			50

Pre-requisite Course		
Codes		
	CO1	Explain the IoT architecture, protocols, and communication technologies. (<i>Understand</i>)
	CO2	Identify and interface sensors, actuators, and microcontrollers for IoT applications. (<i>Apply</i>)
Course Outcomes	CO3	Develop IoT-based systems using ESP32/Raspberry Pi with cloud integration. (<i>Create</i>)
	CO4	Analyze IoT security challenges and propose suitable solutions. (<i>Analyze</i>)
	CO5	Design and test an end-to-end IoT project for a real-world application. (<i>Evaluate, Create</i>)

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Module 1: Introduction to IoT and Industry 4.0	1,2,5	4
	1.1	Concepts of IoT: Architecture, protocols, and standards		
	1.2	IoT Communication Technologies (Wi-Fi, Bluetooth, Zigbee,		
	1.3	LoRa, NB-IoT) MQTT, CoAP, HTTP		
2	1.5	Module 2: Sensors, Actuators, and Microcontrollers (6 Hours)	1,2	6
	2.1	Types of Sensors (Temperature, Humidity, Pressure, Motion, etc.)		
	2.2	Actuators: DC Motors, Relays, Servo Motors		
	2.3	Microcontrollers: ESP32, Raspberry Pi, Arduino		
	2.4	Data Acquisition and Processing		
3		Module 3 IoT Protocols and Communication	1,2,5	6
	3.1	Introduction to MQTT, CoAP, HTTP, and WebSockets		
	3.2	Message Queue Telemetry Transport (MQTT) and Publish- Subscribe Model		
	3.3	Data Transmission using HTTP and REST APIs		
		Module 4: IoT Cloud Platforms ,Data Analytics Security ,Privacy in IoT	1,3,5	4
4	4.1	IoT Cloud Platforms: Thingspeak, Firebase, AWS IoT		
		Data Analytics: Role of big data and machine learning in IoT. Visualization Tools: Grafana, Tableau, and Power BI.		

(Autonomous College affiliated to University of Mumbai)	FI. Agnel Asman, Banustanu, Banula (w), Mumbai – 40	0 03
	(Autonomous College affiliated to University of Mum	oai)

	4.2	IoT Data Lifecycle: Acquisition, transmission, storage, and	1	
		visualization		
	4.3	IoT Databases: Time-series databases and NoSQL		
	4.4	IoT Security Challenges and Threats, Encryption Techniques:		
		AES, RSA, TLS, Secure Authentication & Data Protection in		
		ІоТ		
		Module5:,IoT Applications, Future Trends and Emerging	4,5	6
		Technologies		
5	5.1	Smart Manufacturing: Automation, predictive maintenance, and		
		robotics.		
	5.2	IoT in Logistics and Supply Chain: RFID, smart tracking, and		
		inventory management.		
	5.3	IoT in Renewable Energy: Smart grids, monitoring, and		
		optimization		
	5.4	AI in IoT: Role of machine learning and deep learning.		
		5G and IoT: Opportunities and challenges.		
		Edge AI: Combining IoT devices with AI at the edge.		
		Sustainability in IoT: Energy-efficient frameworks and green		
		IoT.		
	5.5	Smart Manufacturing: Automation, predictive maintenance, and		
		robotics.		
			Total	26

Module No.	Sr.no	Suggested List of Tutorials		Hrs.
1	1	Sending ESP32 Sensor Data to Thingspeak		2
		Visualisation(Use Tinkercad Simulation Platform)		
		• Upload temperature & humidity data to Thingspeak		
		• View real-time plots on Thingspeak dashboard		
2	2	Setup and Configuration of an IoT Development Board		2
		Objective: Install and configure ESP32 or Raspberry Pi for IoT		
		projects.		
		Tools: Arduino IDE, Python.		
3	3	Implement MQTT for Sensor Data Communication		2
		Objective: Transmit real-time sensor data to a cloud platform		
		using MQTT.		
		Tools: MQTT.fx, HiveMQ.		
4	4	Compare IoT Protocols (CoAP vs. MQTT)		2
		Objective: Analyze energy consumption and latency differences		
		between protocols.		
		Tools: Python, Wireshark.		
5	5	LoRa Communication Setup		2
		Objective: Establish communication between two LoRa nodes		
		and measure range.		
		Tools: LoRa modules, Arduino IDE.		
6	6	Interfacing Sensors and Actuators		2

Fr. Agnel Ashram,	Bandstand, Bandra	a (W), Mumbai – 400 05	5
(Autonomous Co	llege affiliated to	University of Mumbai)	

10	10	Real-Time IoT Data Analytics Objective: Perform basic analytics on IoT data (e.g., finding	2
		Tools: InfluxDB, Grafana.	
		dashboards.	
		IoT Data Visualization Using Grafana Objective: Collect sensor data and visualize it in Grafana	
		Automate data logging to Google Sheets via IFTTT	
		Logging IoT Data to Google Sheets using ESP32 & IFTTT	
		sensor data from Firebase Realtime Database	
9	9	Integrating ESP32 with Google Firebase:Send & retrieve	4
		Tools: ESP32, Current Sensor, ThingSpeak.	
		in real-time.	
		Objective: Monitor and analyze household energy consumption	
8	8	IoT-Based Energy Monitoring	4
		Tools: ESP32, Node-RED, Google API.	
		Google Assistant.	
-		Objective: Control appliances using voice commands via	
7	7	Build a Smart Home Automation System	 4
		Tools: Arduino IDE, Blynk App.	
		Objective: Interface temperature, humidity, and motion sensors with ESP32 to trigger an actuator.	

<u>Course Assessment:</u> Theory:

ISE-1:

Activity: Quiz and assignments 10 Marks Case Study Presentation **ISE-2:** Two hours 10 Marks Activity: Article Discussion, Quiz and Assignments Outcome: Reflective Journal

MSE: 90 minutes30 Marks written examination based on 50% syllabus **ESE:** 90 minutes 30Marks (remaining 50% syllabus) written examination based on entire syllabus

Lab:

ISE:

1. ISE-1 will be conducted for four or 50% of experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2

a. Remaining Four experiments or 50% of experiments. Continuous pre-defined rubrics-based evaluation for 30 marks.

b. Simulation using modern tools to solve the given problem statement for 10 marks/Mini project

Recommended Books:

- 1. Arshdeep Bahga, Vijay Madisetti "Internet of Things: A Hands-On Approach" Publisher: Orient Blackswan Private Limited - New Delhi
- 2. Peter Waher, "Mastering Internet of Things: Design and Create Your Own IoT Applications", Packt Publishing (March 28, 2018); eBook (Free Edition)
- 3. Perry Lea," "IoT and Edge Computing for Architects: Implementing Edge and IoT Systems from Sensors to Clouds with Azure IoT and AWS IoT Core", Publisher(s): Packt Publishing ISBN: 9781839214806
- 4. Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", Publisher New York, NY : Apress
- 5. David Hanes, Gonzalo Salgueiro, Rob Barton," IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things" Released June 2017Publisher(s): Cisco Press ISBN: 978013430709

Online Resources:

 https://onlinelibrary.wiley.com/doi/book/10.1002/9781119740780?msockid=0d711fd0b87 062382ca90a8bb9c26374(Print ISBN:9781119740759 |Online ISBN:9781119740780 |DOI:10.1002/9781119740780)

Further Reading:

- 1. Adrian McEwen, Hakim Cassimally, "Designing the Internet of Things"
- 2. Klaus Schwab, "The Fourth Industrial Revolution"

DOUBLE MINOR (DM) (OPTIONAL MINOR IN EMERGING AREAS)

Automation and Robotics (offered to Comp, CSE and ECS)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
25DM31	Introduction to CAD/CAM	L	Т	Р	L	Т	Р	Total
		2	2		2	2		4
		Examination Scheme						
			ISE1	MSE	ISE2	ESE	Т	otal
		Theory	20	30	20	30	100	
		Tutorial	20		30			50

Pre-requisite Course Codes	Basics	s of Mathematics.
	CO1	Use of computer graphics in design.
	CO2	Understand Fundamental Concepts geometric
		transformation.
	CO3	Apply parametric equations for curve and surface
Course Outcomes		generation.
	CO4	Understand the fundamental principles, components,
		and working of CNC machines.
	CO5	Apply the appropriate code for performing particular
		tasks in a CNC.

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Introduction to CAD:	1-8	
		Need and Utility of CAD systems in industry, Fundamentals		
		of computer graphics, Types of Geometric Modelling,		
		Raster Graphics: line and circle algorithm.		6
	2.1	Geometric Transformation: Homogenous Transformation		
2		(2D Translation, scaling, Reflection, Rotation) Window Viewport and Clipping.		6
	2.2	Window Viewport and Clipping.		
	3.1	Curves And Surfaces:		
		Cubic spines Bezier curves & B- spines (No Numerical).		4
3	3.2	CAD Application software's, Product data exchanges formats	1-8	
		(STEP, IGES)		
4	4.1	CNC Machines:	1-8	
		Fundamental elements of CNC, Benefits of CNC, Computer		
		control concepts, Data processing units.		4
		Basics of control systems:		
		Motion controller, Interpolation-Linear & Circular, Positioning &		
		contouring control loops, Incremental & Absolute system, DNC		
		& CNC systems and Adaptive control system.		
		CNC Hardware Basics:		
		CNC drives, Spindle design, Actuation and Feedback devices.		
		, <u>1</u>		

THE NATION		(Autonomous College affiliated to University of Mumb	oai)	
5	5.1	CNC Programming and simulation: G & M code,	1-8	6
		Tool length, nose radius & Diameter compensation,		
		Canned cycles, Turning & Machining centre programming.		
		CAM simulation software.		
			Total	26

Tutorial:

Sr. No.	Tutorial Details	Hours
1	Line DDA algorithm numerical.	01
2	Bresenham's Line Algorithm.	01
3	Circle Algorithm.	01
4	2 D transformation using translation and Rotation matrix.	01
5	Compound 2 D transformation.	01
6	Bezier Curve.	01
7	Turning Centre (Sinumerik)Programming.	01
8	Machining Centre (Fanuc) Programming.	01
	Total Hours	08

Course Assessment:

Theory:

<u>ISE-1:</u>

Activity: Quizzes/Assignment on first two modules (20 Marks)

<u>ISE-2:</u>

Activity: Quizzes/Assignment on last three modules (20 Marks)

MSE: 90 minutes 30 Marks written examination based on 50% syllabus

ESE: 90 minutes 30 Marks written examination based on remaining syllabus after MSE

<u>Tutorial:</u>

1. ISE-1

First Four tutorials (20 marks)

Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2

i. Next four tutorials (30 marks)

Continuous pre-defined rubrics-based evaluation for 30 marks

Recommended Books:

1. CAD/CAM by Groover and Zimmers

2. CAD Principles and Applications by Barr, Krimger and Lazaer

3. William M Neumann and Robert F.Sproul "*Principles of Computer Graphics*", Mc Graw Hill Book Co. Singapore, 1989.

4. Donald Hearn and M. Pauline Baker "Computer Graphics", Prentice Hall, Inc., 1992.

5. Foley, Wan Dam, Feiner and Hughes – *Computer graphics principles & practices, Pearson Education* – 2003.

6. CAD / CAM by P.N. Rao (Tata-Mcgraw-Hill) 2

7. Computer Graphics by Hearn and Baker (PHI)

8. Mastering CAD – CAM by Ibarahim Zeid (Tata-Mcgraw-Hill) 4

Links for online NPTEL/SWAYAM courses:

- 1. https://nptel.ac.in/courses/112/102/112102101/
- 2. https://nptel.ac.in/courses/106/102/106102065/
- 3. https://nptel.ac.in/courses/106/102/106102065/
- 4. https://nptel.ac.in/courses/112/102/112102103/
- 5. https://nptel.ac.in/courses/112/105/112105211/
- 6. https://nptel.ac.in/courses/112/104/112104265/
- 7. https://www.youtube.com/watch?v=2cCMty9v3Tg
- 8. https://www.youtube.com/watch?v=2zPh26Q1BT8

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned			
	3D Printing	L	Т	Р	L	Т	Р	Total	
		2	2		2	2		4	
25DM22		Examination Scheme							
25DM32			ISE1	MSE	ISE2	ESE	Т	otal	
		Theory	20	30	20	30	1	.00	
		Tutorial	20		30			50	

Pre-requisite Course	Basic	Engineering Drawing & Design.
Codes		
	CO1	Illustrate understanding of various cost-effective alternatives for manufacturing products and select the feasible 3D Printing for specific technical application
	CO2	Understand and apply the principles of liquid-based rapid prototyping and tooling processes to build and generate data for 3D printing of various objects.
Course Outcomes	CO3	Understand and apply the principles of solid-based rapid prototyping systems for efficient 3D printing and product development.
	CO4	Understand and apply the principles of powder-based additive manufacturing systems for efficient prototyping and production of complex geometries.
	CO5	Understand and apply reverse engineering techniques in 3D printing to reconstruct, modify, and optimize existing designs for manufacturing and prototyping.

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Introduction to 3D printing, its historical development,	1-8	
		advantages. Classification of 3D printing process,		
		Advantages & Disadvantages, Applications to various		6
		fields, Rapid Tooling, Design Consideration.		
	2.1	Liquid-Based Systems:		
2		Stereolithography (SLA): Photopolymerization process,	1-8	6
		Working Principle, Advantages and limitation, Application		
	2.2	Solid ground curing: Working Principle, Advantages and		
		limitation, Application.		
	3.1	Solid Based Rapid Prototyping Systems:		
3		LOM (Laminated Object Manufacturing) System: Working		4
		Principle, Advantages and limitation, Application.	1-8	
	3.2	FDM (Fused Deposition Modelling) System: Working		
		Principle, Advantages and limitation, Application.		
	4.1	Powder Based Systems:		

		(Autonomous Conege annated to University of Mum	Dalj						
4		SLS (Selective Laser Sintering):Working Principle,							
		Advantages and limitation, Application.	dvantages and limitation, Application.						
	4.2	(3DP) Three-Dimensional Printing: Working Principle, 1-8							
		vantages and limitation, Application.							
	4.3	(EBM) Electron Beam Melting: Working Principle,							
		Advantages and limitation, Application.							
5	5.1	Reverse Engineering:	1-8	4					
		Data Extraction, Data Processing.							
		Applications and Case Studies:							
		Engineering Applications, Medical Applications.							
	•		Total	26					

Tutorial:

Sr. No.	Tutorial Details	Hours
1	Preprocessing of 3d Print Component.	01
2	3D Printing of Component.	01
3	Case study on SLA.	01
4	Case study on LOM.	01
5	Case study on FDM.	01
6	Case study on SLS.	01
7	Case study on 3DP.	01
8	Case study on EBM.	01
	Total Hours	08

Course Assessment:

Theory:

<u>ISE-1:</u>

Activity: Quizzes/Assignment on first two modules (20 Marks)

<u>ISE-2:</u>

Activity: Quizzes/Assignment on last three modules (20 Marks)

MSE: 90 minutes 30 Marks written examination based on 50% syllabus

ESE: 90 minutes 30 Marks written examination based on remaining syllabus after MSE rial:

Tutorial:

ISE-1

First Four tutorials (20 marks)

Continuous pre-defined rubrics-based evaluation for 20 marks.

ISE-2

Next four tutorials (30 marks)

Continuous pre-defined rubrics-based evaluation for 30 marks

Recommended Books:

- 1. Chua C.K., Leong K.F., and Lim C.S., "Rapid Prototyping Principles and Applications",
- 2. World Publishing Co. Pte. Ltd.
- 3. Gibson, D.W. Rosen, and B. Stucker, "Additive Manufacturing Technologies Rapid
- 4. Prototyping to Direct Digital Manufacturing", 2010, Springer Inc.
- 5. Ali Kamrani, EmadAbouel Nasr, "Rapid Prototyping Theory and Practice", 2006, Springer

- 6. RafiqNoorani, Rapid Prototyping: Principles and Applications, John Wiley & Sons, Inc., 2006, ISBN 0-471-73001-7
- 7. James O. Hamblen, and Michael D. Furman, "Rapid Prototyping of Digital Systems", Kluwer Academic Publishers.
- 8. Kenneth G. Cooper, "Rapid Prototyping Technology Selection and Application", 2001, Marcel Dekker Inc, New York.

Links for online NPTEL/SWAYAM courses:

- 1. <u>https://onlinecourses.nptel.ac.in/noc24_me138/preview</u>
- 2. <u>https://onlinecourses.nptel.ac.in/noc22_me74/preview</u>
- 3. https://onlinecourses.nptel.ac.in/noc22_me130/preview
- 4. <u>https://onlinecourses.nptel.ac.in/noc25_mm02/preview</u>

DOUBLE MINOR (DM) (OPTIONAL MINOR IN EMERGING AREAS)

Sustainability (offered to all)

(Autonomous College affiliated to University of Mumbai)

Course Code	Course Name		ing Sch rs/week	C	Credits Assigned				
	Design Thinking for Sustainability	L	Т	Р	L	Т	Р	Total	
		2	2		2	2		4	
25DM41		Examination Scheme							
25DN141			ISE1	MSE	ISE2	ESE	Т	otal	
		Theory	20	30	20	30	100		
		Tut	20		30			50	

This course explores how Design Thinking methodologies can drive sustainable innovation across various sectors. By integrating human-centered design, systems thinking, and circular economy principles, students will learn to develop solutions that address environmental, social, and economic challenges while fostering long-term sustainability.

Pre-requisite	Course	e Codes	
	CO1	Explain th	e principles of Design Thinking and their application to sustainable
		innovation	l
Course	CO2	Apply pro	blem-solving techniques to address sustainability challenges
Course Outcomes	CO3	Apply sys	stems thinking and circular economy principles to sustainable
Outcomes		product an	d service design
	CO4	Develop p	rototypes and iterative solutions to sustainability challenges.
	CO5	Use collab	orative, interdisciplinary approaches to problem-solving

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Ancient Indian Sustainable Practices in Engineering and	1	2
		Management		
		Overview of insights into sustainable solutions in construction,		
		energy, materials, water management, transportation, and		
		financial management		
	1.2	Introduction to Design Thinking for Sustainability	2-3	3
		Overview of Design Thinking principles (Empathize, Define,		
		Ideate, Prototype, Test). Fundamentals of sustainability in design.		
		Importance of sustainability in innovation and problem-solving.		
		Case studies of successful sustainable design projects.		
		UN SDGs and their role in design.		
2	2.1	Human-Centered & Systems Thinking for Sustainability	2-3	3
		Understanding user needs and behavior for sustainable solutions.		
		Empathy in sustainable design – Ethical considerations and		
		inclusivity.		
		Systems thinking approach – How different systems interact in		
		sustainable development.		
		Tools for mapping stakeholder impact and environmental		
		consequences.		
	2.2	Problem Framing & Identifying Sustainability Challenges	2-3	5
		Defining real-world sustainability challenges.		
		Conducting sustainability-focused design research.		

NUMBERS HAD CAN BUR O THE NATION		(Autonomous College affiliated to University of Mumbai)		
		Life Cycle Thinking (LCT) – Cradle-to-cradle design and		
		environmental impact analysis.		
		Problem framing techniques – How to ask the right sustainability		
		questions.		
		Integrating biodiversity into design – Living walls, urban forests,		
		pollinator-friendly spaces		
		Passive design strategies– Natural ventilation, daylighting,		
		thermal mass.		
		Green buildings and materials– LEED, BREEAM, IGBC		
		certification.		
		Net-zero and energy-efficient buildings – Smart homes, solar		
		panels, green roofs.		
		Sustainable urban planning– Smart cities, transit-oriented		
		development, walkable communities.		
3	3.1	Ideation for Sustainable Innovation	4	4
		Brainstorming for green solutions- Ideation techniques for		
		sustainability.		
		Biomimicry in sustainable design- Learning from nature's		
		solutions.		
		Regenerative and resilient design principles.		
		Case studies – Sharkskin-inspired materials, termite-inspired		
		ventilation, lotus-effect coatings.		
	3.2	Prototyping & Testing for Sustainability	2-4	3
		Creating low-impact prototypes using sustainable materials.		
		Digital prototyping and simulation tools for eco-friendly design.		
		Evaluating sustainability impact and feasibility in prototypes.		
		Rapid testing and iteration for scalable, sustainable solutions.		
4	4.1	Circular Economy & Sustainable Business Models	5	2
		Principles of the circular economy and zero-waste design.		
		Business models for sustainability– Social enterprises, green start-		
		ups, and impact investing.		
		Sustainable product-service systems (PSS)		
	4.2	Sustainable Innovation in Different Sectors	2-5	2
		Sustainable architecture & urban planning – Green buildings,	-	
		smart cities.		
		Eco-friendly product design – Sustainable packaging, furniture,		
		and technology.		
		Sustainable fashion and textiles – Ethical sourcing, upcycling,		
		slow fashion.		
		Green transportation and mobility solutions – EVs, bike-sharing,		
		public transport innovations.		
	4.3	Digital Technologies & Sustainability		2
		Sustainable UX/UI design – Reducing digital carbon footprint.		
		AI and IoT in smart sustainability solutions.		
		Blockchain for supply chain transparency and sustainability		
		tracking.		
		3D printing and additive manufacturing for zero-waste		
		production.		

Total 26

Recommended Books:

- 1. B Mahadevan, Vinayak Rajat Bhat, Nagendra Pavana R. N., "Introduction to Indian Knowledge System: Concepts and Applications" PHI, 2022
- 2. Idris Mootee Design Thinking for Strategic Innovation
- 3. William McDonough & Michael Braungart *Cradle to Cradle: Remaking the Way We Make Things*
- 4. Janine Benyus Biomimicry: Innovation Inspired by Nature
- 5. Peter Lacy, Jessica Long, Wesley Spindler The Circular Economy Handbook
- 6. IDEO's Design Thinking Toolkit for Sustainability

Theory Assessment:

ISE-1: Case studies of sustainable innovations in different industries 20 Marks

- MSE: 90 minutes **30 Marks** written examination based on 50% syllabus
- **ISE-2:** Case studies of companies using circular economy models: **20 Marks**

ESE: 90 minutes 30 Marks written examination based on remaining syllabus after MSE

Tutorial Assessment:

Activity-1: Complex Problem Solving using Design Thinking principles (20 Marks) Activity-2: Create a campaign to promote sustainability 30 Marks

(Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
	Green Computing	L	Т	Р	L	Т	Р	Total	
		2	2		2	2		4	
25DM42		Examination Scheme							
25DN142			ISE1	MSE	ISE2	ESE	Total		
							100		
		Theory	20	30	20	30]	.00	

Green computing focuses on environmentally sustainable computing practices. This course covers energyefficient hardware, software, and system designs, as well as strategies for reducing IT's environmental footprint.

Pre-requisite	Course	e Codes	
	CO1	Explain th	e fundamentals of green computing and sustainability
	CO2	Explain er	nergy-efficient computing technologies
Course	CO3	Explore d	esigns and energy management techniques for green data center
Course Outcomes		and sustain	nable materials in Electronics
Outcomes	CO4	Explain st	rategies for development of green hardware and software
	CO5	Explain po	olicies, standards and regulations for sustainability
	CO6	Identify fu	iture trends in green computing

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Introduction to Green Computing	1,2	3
		Definition and scope of green computing		
		Environmental impact of computing and IT systems		
		The need for sustainable computing practices		
		Life cycle assessment of computing devices		
	1.2	Energy-Efficient Computing	1,2	3
		Energy consumption in computing devices		
		Power management techniques in hardware and software		
		Energy-efficient processors and architectures		
		Low-power computing techniques (e.g., Dynamic Voltage and		
		Frequency Scaling - DVFS)		
		Virtualization and cloud computing for energy optimization		
2	2.1	Green Data Centers and Cloud Computing	1,2	3
		Energy-efficient data center architectures		
		Energy-efficient cooling and thermal management		
		Renewable energy integration in data centers		
		Sustainable cloud computing practices		
	2.2	Sustainable Materials in Electronics	1,2	4
		Environmental impact of traditional materials in electronics		
		Biodegradable and recyclable materials for hardware		
		components		
		Alternative materials to reduce toxic waste (e.g., lead-free		
		soldering, bio-plastics)		
		Sustainable circuit board manufacturing (e.g., bio-resin PCBs)		

FI. Aglici Asi	mann, Danustanu, Danura (W)	, mumbai – 4 00 030
(Autonomo	ous College affiliated to Unive	ersity of Mumbai)

			Total	26
		Future of green technology		
		IoT and smart grids for sustainable computing		
		Blockchain and green IT solutions		
		AI and machine learning for energy-efficient computing		
	4.2	Future Trends and Research in Green Computing	3,4,5	3
		Green IT frameworks and assessment tools		
		Corporate sustainability initiatives		
		Government regulations on IT sustainability		
		WEEE (Waste Electrical and Electronic Equipment) directive		
		14001)		
-	7.1	Global sustainability standards (e.g., Energy Star, EPEAT, ISO	1,2	5
4	4.1	Policies, Regulations, and Industry Standards	1,2	3
		Power-aware computing in mobile and embedded systems		
		Energy-efficient programming techniques Optimized algorithms for power-aware computing		
	3.2	Green Software Development	1,2	3
	2.2	Green supply chain and procurement strategies	1.2	2
		Recycling and refurbishing computing devices		
		Energy-efficient storage and networking devices		
		Upgradeability and modular design		
		Design and manufacturing of eco-friendly hardware		
3	3.1	Sustainable Hardware	1,2	4
		Reducing E-Waste Through Material Innovation		
		E-waste management and recycling		

Recommended Books:

- 1. Bud E. Smith Green *Computing: Tools and Techniques for Saving Energy, Money, and Resources*, 1st Edition, CRC Press
- Toby J. Velte, Anthony T. Velte, Robert Elsenpeter Green IT: Reduce Your Information System's Environmental Impact While Adding to the Bottom Line, 1st Edition, McGraw Hill Osborne Media
- 3. Wu-chun Feng Green Computing Book, 1st Edition, CRC Press
- 4. Sourav Banerjee, Chinmay Chakraborty, Kousik Dasgupta *Green Computing and Predictive Analytics for Healthcare*, 1st Edition, Chapman & Hall
- 5. Stephen Peake *Renewable Energy: Power for a Sustainable Future*, Oxford University Press, 3rd Edition
- 6. Research papers and case studies from IEEE, ACM, and sustainability journals

Theory Assessment:

ISE-1: Article Reflection: 20 Marks
MSE: 90 minutes 30 Marks written examination based on 50% syllabus
ISE-2: Quiz: 20 Marks
ESE: 90 minutes 30 Marks written examination based on remaining syllabus after MSE

Tutorial Assessment:

Activity-1: Case Study (20 Marks) on one of following topic (not limited to)-

- 1. Sustainable data centers
- 2. Sustainable software solutions
- 3. Best practices from major IT manufacturers
- 4. Companies adopting sustainable materials (e.g., Dell, HP)
- 5. Energy-efficient hardware initiatives from companies (e.g., Apple, Google, Microsoft)
- 6. Innovations in reducing toxic waste in electronics
- 7. Success stories in reducing hardware-related carbon footprints

Activity-2: Green Digital Certificate: 30 Marks

Complete Online Certificate Course (and submit certificate) from INCO Academy: This Self- paced online Free Course equips learners with the knowledge and skills to build sustainable digital solutions.

(https://greendigitalcertificate.inco-group.co/course)

DOUBLE MINOR (DM) (OPTIONAL MINOR IN EMERGING AREAS)

Data Science (offered to ECS, Mech)

Course Code	Course Name	Teaching Scheme (Hrs/week)Credits Assigned						
		L	Т	Р	L	Т	Р	Total
		2	2	0	2	2		4
25DM51	Statistics for Data	Examination Scheme						
25DN151	Science		ISE1	MSE	ISE2	ESE	T	otal
		Theory	20	30	20	30	1	00
		Tutorial	20		30		4	50

Pre-requisit	e Cours	e BSC11ME01, BSC11ME03, VSE11ME02
Codes		
	CO1	Apply basic statistical techniques to any given structured data base and summarize it
Comme	CO2	Use discrete and continuous probability distribution to solve mathematical problems based on it
Course	CO3	Use appropriate sampling method for any real world case study
Outcomes	CO4	Apply hypothesis testing techniques to real world scenarios and draw meaningful conclusions.
	CO5	Conduct analysis of variance by constructing ANOVA table for one way and two way ANOVA

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Introduction	1,3	5
	1.1	Data and Statistics: Elements, Variables, and Observations,		
		Scales of Measurement, Categorical and Quantitative Data,		
		Cross-Sectional and Time Series Data, Descriptive Statistics,		
		Tabular and Graphical Summarizing of Categorical Data,		
		Summarizing of Quantitative Data, Cross Tabulations and		
		Scatter Diagram.	-	
	1.2	Numerical Measures: Measures of Location, Measures of		
		Variability, Measures of Distribution Shape, Relative Location,		
		and Detecting Outliers, Box Plot, Measures of Association		
		Between Two Variables, Scatter plot, QQ plot		
2		Probability	1,3	5
	2.1	Probability: Experiments, Counting Rules, and Assigning		
		Probabilities, Events and Their Probabilities, Complement of		
		an Event, Addition Law Independent Events, Multiplication		
		Law, Baye's theorem		
	2.2	Discrete Probability Distributions: Random Variables,		
		Discrete Probability Distributions, Expected Value and		
		Variance, Binomial Probability Distribution, Poisson		
		Probability Distribution		
	2.3	Continuous Probability Distributions: Uniform Probability		
		Distribution, Normal Curve, Standard Normal Probability		

		Distribution, Computing Probabilities for Any Normal		
		Probability Distribution		
3		Sampling	1,3	4
	3.1	Sampling from a Finite Population, Sampling from an Infinite		
		Population, Other Sampling Methods, Stratified Random		
		Sampling, Cluster Sampling, Systematic Sampling,		
		Convenience Sampling, Judgment Sampling, parameter and		
		statistic, standard error of statistic, sampling and non-sampling		
		errors, Central Limit theorem		
	3.2	Interval Estimation: Point estimation, Confidence Intervals,		
		Student's t-Distribution,		
4		Hypothesis Tests	1,3	7
	4.1	Developing Null and Alternative Hypotheses, Type I and Type		
		II Errors, Population Mean: Known, Population Mean:		
		Unknown, Inference About Means and Proportions with Two		
		Populations, Inferences About Population Variances		
	4.2	Chi-Square Distribution, Tests of Goodness of Fit, Multinomial		
		Population, Test of Independence		
5		The Analysis of Variance (ANOVA)	1,3	5
	5.1	F distribution, Variance analysis in One way classification,		
		Variance analysis in Two way classification		
			Total	26

Course Assessment:

Theory:

ISE-1: 20 Marks

Activity: Any two activities like quiz/ Assignments/crossword/ oral/case study on initial 50% syllabus

ISE-2: 20 Marks

Activity: Any two activities like quiz/ Assignments/crossword/ oral/case study on remaining 50% syllabus

<u>MSE</u>: 30 Marks written examination based on 50% syllabus <u>ESE</u>: 30 Marks written examination based on remaining syllabus

Tutorial:

ISE-1: 20 Marks Evaluation based on first four tutorials **ISE-2:** 30 Marks Evaluation based on next six tutorials

Topics for Tutorial
Tutorial 1: Calculate statistical measures for any real world available
data using python
Tutorial 2: Show different graphs (scatter plot, box plot and QQ plot)
for the given data using python
Tutorial 3: Problem solving for binomial/Poisson distribution
Tutorial 4: Problem solving for Normal Probability Distribution
Tutorial 5: Case study on sampling
Tutorial 6: Central limit theorem quiz
Tutorial 7: Hypothesis testing (one population problem solving)
Tutorial 8: Hypothesis testing(two population problem solving)
Tutorial 9: Quiz/tutorial on chi square testing
Tutorial 10: programming of ANOVA using any software

Recommended Books:

- 1. David R. Anderson, Dennis J. Sweeney, Thomas A. Williams "Statistics For Business And Economics"11th Edition, South-Western, Cengage Learning
- 2. John A. Rice, "Mathematical Statistics and Data Analysis", University of California, Berkeley, Thomson Higher Education
- 3. S.C. Gupta, V.K. Kappor, "Fundamentals Of Mathematical Statistics (A Modern Approach)" Tenth Revised Edition, Sultan Chand & Sons Educational Publishers New Delhi
- 4. Jay L. Devore, "Probability and Statistics for Engineering and the Sciences", Cengage Publication.
- 5. O'Reilly Media, Wes McKinney, "Python for Data Analysis", 2nd Edition, O'Reilly Media, Wes McKinney.

Course Code	Course Name	Teaching Scheme (Hrs/week) Credits Assigned						
		L	Т	Р	L	Т	Р	Total
		2	2	0	2	2		4
25DM52	Data Analytics and	Examination Scheme						
25010152	Visualization		ISE1	MSE	ISE2	ESE	T	otal
		Theory	20	30	20	30	1	00
		Tutorial	20		30			50

Pre-requisit	e Cour	se BSC11ME01, BSC11ME03, DM51
Codes		
	CO1	Comprehend basics of data analytics and visualization
	CO2	Perform various analysis and visualization technique using python or any
Course		other software
Course Outcomes	CO3	Apply various regression models on given data set and perform prediction.
Outcomes	CO4	Demonstrate advance understanding of Time series concepts and analysis
		of data using various time series models.
	CO5	Analyze Text data and gain insights.

Module	Unit	Topics	Ref.	Hrs.		
No.	No.					
1		Introduction	1,2	4		
	1.1	Data Analytics Lifecycle overview: Key Roles for a Successful				
		Analytics, Background and Overview of Data Analytics				
		Lifecycle Project				
	1.2	Need of exploratory data analysis, cleaning and preparing data,				
		Feature engineering, Missing values, understand datase				
		through various plots and graphs (histogram, scatter plot, bar				
		chart, pie chart, stem and leaf plot, density plot), draw				
		conclusions, the Kinds of Data Analytics – Descriptive,				
		Diagnostic, Predictive and Data Mining				
2		Data analytics and Visualization with Python	2	4		
	2.1	Essential Data Libraries for data analytics: Pandas, NumPy,				
		SciPy.				
		Plotting and visualization with python: Introduction to				
		Matplotlib, Basic Plotting with Matplotlib, Create Histogram,				
		BarChart, Pie chart, Box Plot, violin plot using Matplotlib.				
		Introduction to seaborn Library, MultiplePlots,				
3		Regression	2,5	6		
	3.1	Simple Linear Regression: Simple Linear Regression Model,				
		Regression Equation, Least Squares Method, Coefficient of				
		Determination, Correlation Coefficient, Regression coefficient,				
		Model Assumptions, testing for Significance, Residual				
		Analysis: Outliers and Influential Observations, explained and				
		unexplained variation				

(Autonomous College affiliated to University of Mumbai)			
3.2	Multiple Regression: Multiple Regression Model, Least		
	Model Assumptions, Testing for Significance, Categorical		
	Independent Variables, Residual Analysis		
	Time Series Analysis and Prediction	1,3	6
4.1	Overview of Time Series Analysis, Components of time series,		
	decomposition of time series, methods of finding trend,		
	methods of finding seasonal variation, Box-Jenkins		
	Methodology		
4.2	ARIMA Model, Autocorrelation Function (ACF, PACF),		
	Autoregressive Models, Moving Average Models, ARMA and		
	ARIMA Models, Building and Evaluating an ARIMA Model		
	Text Analytics	1,4	6
5.1	History of text mining, Roots of text mining overview of seven		
	practices of text analytic, Application and use cases for Text		
	mining: extracting meaning from unstructured text,		
	Summarizing Text.		
5.2	Text Analysis Steps, A Text Analysis Example, Collecting Raw		
	Text, Representing Text, Term Frequency—Inverse Document		
1		Total	26
	4.1 4.2 5.1	 3.2 Multiple Regression: Multiple Regression Model, Least Squares Method, Multiple Coefficient of Determination, Model Assumptions, Testing for Significance, Categorical Independent Variables, Residual Analysis Time Series Analysis and Prediction 4.1 Overview of Time Series Analysis, Components of time series, decomposition of time series, methods of finding trend, methods of finding seasonal variation, Box-Jenkins Methodology 4.2 ARIMA Model, Autocorrelation Function (ACF, PACF), Autoregressive Models, Moving Average Models ,ARMA and ARIMA Model s, Building and Evaluating an ARIMA Model Text Analytics 5.1 History of text mining, Roots of text mining overview of seven practices of text analytic, Application and use cases for Text mining: extracting meaning from unstructured text, Summarizing Text. 5.2 Text Analysis Steps, A Text Analysis Example, Collecting Raw 	 3.2 Multiple Regression: Multiple Regression Model, Least Squares Method, Multiple Coefficient of Determination, Model Assumptions, Testing for Significance, Categorical Independent Variables, Residual Analysis Time Series Analysis and Prediction 1,3 4.1 Overview of Time Series Analysis, Components of time series, decomposition of time series, methods of finding trend, methods of finding seasonal variation, Box-Jenkins Methodology 4.2 ARIMA Model, Autocorrelation Function (ACF, PACF), Autoregressive Models, Moving Average Models ,ARMA and ARIMA Model , Building and Evaluating an ARIMA Model Text Analytics 1,4 5.1 History of text mining, Roots of text mining overview of seven practices of text analytic, Application and use cases for Text mining: extracting meaning from unstructured text, Summarizing Text. 5.2 Text Analysis Steps, A Text Analysis Example, Collecting Raw Text , Representing Text ,Term Frequency—Inverse Document Frequency (TFIDF),Categorizing Documents by Topics, Determining Sentiments , Gaining Insights .

Course Assessment:

Theory:

ISE-1: 20 Marks

Activity: Any two activities like quiz/ Assignments/crossword/ oral/case study on initial 50% syllabus

ISE-2: 20 Marks

Activity: Any two activities like quiz/ Assignments/crossword/ oral/case study on remaining 50% syllabus

<u>MSE</u>: 30 Marks written examination based on 50% syllabus <u>ESE</u>: 30 Marks written examination based on remaining syllabus

Tutorial:

ISE-1: 20 Marks Evaluation based on first four tutorials ISE-2: 30 Marks Evaluation based on next six tutorials

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

(Autonomous College affiliated to University of Mumbai)

Topics for Tutorial
Tutorial 1: Case study on exploratory data analysis
Tutorial 2: Perform exploratory analysis on any real world data using
python
Tutorial 3: Perform visualization task in python for the given data
Tutorial 4: Perform visualization task in Excel for the given data
Tutorial 5: Problem solving on Regression
Tutorial 6: Create a Linear Regression model for a dataset and display
the error measures, Chose a dataset with categorical data and apply
linear regression model (using python)
Tutorial 7: Quiz on Time series forecasting
Tutorial 8: Implement ARIMA model in python
Tutorial 9: Implement TFIDF algorithm in Python
Tutorial 10: Build interactive dashboard using Tableu

Recommended Books:

- 1. Wes McKinney, "Python for Data Analysis", 3rd Edition, Publisher(s): O'Reilly Media, Inc.
- 2. Bharati Motwani, "Data Analytics using Python", 2nd Edition, Wiley Publications
- 3. George Athanasopoulos, Rob J Hyndman, "Forecasting: Principles and Practice", 3rd Edition, Otext Publication
- 4. Dipanjan Sarkar, "Text Analytics with Python: A Practitioner's Guide to Natural Language Processing", 2ND EDITION, Apress publisher
- 5. David R. Anderson, Dennis J. Sweeney, Thomas A. Williams "Statistics For Business And Economics"11th Edition, South-Western, Cengage Learning

DOUBLE MINOR (DM) (OPTIONAL MINOR IN EMERGING AREAS)

Artificial Intelligence and Machine Learning (offered to Mech)

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

The infinition of the infiniti	100 000
(Autonomous College affiliated to University of M	Iumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
	5DM61 Statistics for Data Science	L	Т	Р	L	Т	Р	Total
		2	2	0	2	2		4
25DM/(1		Examination Scheme						
25DW101			ISE1	MSE	ISE2	ESE	To	otal
		Theory	20	30	20	30	1	00
		Tutorial	20		30		4	50

Pre-requisit	e Cours	e BSC11ME01, BSC11ME03, VSE11ME02
Codes		
	CO1	Apply basic statistical techniques to any given structured data base and
		summarize it
	CO2	Use discrete and continuous probability distribution to solve mathematical
Course		problems based on it
Course Outcomes	CO3	Use appropriate sampling method for any real world case study
Outcomes	CO4	Apply hypothesis testing techniques to real world scenarios and draw
		meaningful conclusions.
	CO5	Conduct analysis of variance by constructing ANOVA table for one way
		and two way ANOVA

Module No.	Unit No.	Topics	Ref.	Hrs.
<u> </u>	190.	Introduction	1.2	5
1	11		1,3	5
	1.1	Data and Statistics: Elements, Variables, and Observations,		
		Scales of Measurement, Categorical and Quantitative Data, Cross-Sectional and Time Series Data, Descriptive Statistics,		
		Tabular and Graphical Summarizing of Categorical Data,		
		Summarizing of Quantitative Data, Cross Tabulations and		
		Scatter Diagram.		
	1.2	Numerical Measures: Measures of Location, Measures of	-	
	1.4	Variability, Measures of Distribution Shape, Relative Location,		
		and Detecting Outliers, Box Plot, Measures of Association		
		Between Two Variables, Scatter plot, QQ plot		
2		Probability	1,3	5
-	2.1	Probability: Experiments, Counting Rules, and Assigning	1,5	5
		Probabilities, Events and Their Probabilities, Complement of		
		an Event, Addition Law Independent Events, Multiplication		
		Law, Baye's theorem		
	2.2	Discrete Probability Distributions: Random Variables,	-	
		Discrete Probability Distributions, Expected Value and		
		Variance, Binomial Probability Distribution, Poisson		
		Probability Distribution		

	22	(Autonomous College anniated to University of Mumba		
	2.3	Continuous Probability Distributions: Uniform Probability		
		Distribution, Normal Curve, Standard Normal Probability		
		Distribution, Computing Probabilities for Any Normal		
		Probability Distribution		
3		Sampling	1,3	4
	3.1	Sampling from a Finite Population, Sampling from an Infinite		
		Population, Other Sampling Methods, Stratified Random		
		Sampling, Cluster Sampling, Systematic Sampling,		
		Convenience Sampling, Judgment Sampling, parameter and		
		statistic, standard error of statistic, sampling and non-sampling		
		errors, Central Limit theorem		
	3.2	Interval Estimation: Point estimation, Confidence Intervals,		
		Student's t-Distribution,		
4		Hypothesis Tests	1,3	7
	4.1	Developing Null and Alternative Hypotheses, Type I and Type		
		II Errors, Population Mean: Known, Population Mean:		
		Unknown, Inference About Means and Proportions with Two		
		Populations, Inferences About Population Variances		
	4.2	Chi-Square Distribution, Tests of Goodness of Fit, Multinomial		
		Population, Test of Independence		
5		The Analysis of Variance (ANOVA)	1,3	5
	5.1	F distribution, Variance analysis in One way classification,		
		Variance analysis in Two way classification		
			Total	26

Course Assessment:

Theory:

ISE-1: 20 Marks

Activity: Any two activities like quiz/ Assignments/crossword/ oral/case study on initial 50% syllabus

ISE-2: 20 Marks

Activity: Any two activities like quiz/ Assignments/crossword/ oral/case study on remaining 50% syllabus

<u>MSE</u>: 30 Marks written examination based on 50% syllabus <u>ESE</u>: 30 Marks written examination based on remaining syllabus

Tutorial:

ISE-1: 20 Marks Evaluation based on first four tutorials **ISE-2:** 30 Marks Evaluation based on next six tutorials

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

(Autonomous College affiliated to University of Mumbai)

Topics for Tutorial
Tutorial 1: Calculate statistical measures for any real world available
data using python
Tutorial 2: Show different graphs (scatter plot, box plot and QQ plot)
for the given data using python
Tutorial 3: Problem solving for binomial/Poisson distribution
Tutorial 4: Problem solving for Normal Probability Distribution
Tutorial 5: Case study on sampling
Tutorial 6: Central limit theorem quiz
Tutorial 7: Hypothesis testing (one population problem solving)
Tutorial 8: Hypothesis testing(two population problem solving)
Tutorial 9: Quiz/tutorial on chi square testing
Tutorial 10: programming of ANOVA using any software

Recommended Books:

- 1. David R. Anderson, Dennis J. Sweeney, Thomas A. Williams "Statistics For Business And Economics"11th Edition, South-Western, Cengage Learning
- 2. John A. Rice, "Mathematical Statistics and Data Analysis", University of California, Berkeley, Thomson Higher Education
- 3. S.C. Gupta, V.K. Kappor, "Fundamentals Of Mathematical Statistics (A Modern Approach)" Tenth Revised Edition, Sultan Chand & Sons Educational Publishers New Delhi
- 4. Jay L. Devore, "Probability and Statistics for Engineering and the Sciences", Cengage Publication.
- 5. O'Reilly Media, Wes McKinney, "Python for Data Analysis", 2nd Edition, O'Reilly Media, Wes McKinney.

Course Code	Course Name	Teaching Scheme (Hrs/week)Credits Assigned						ed
	Fundamentals of AI & ML	L	Т	Р	L	Т	Р	Total
		2	2		2	2		4
25DM62		Examination Scheme						
25DM62			ISE1	MSE	ISE2	ESE	Т	otal
		Theory	20	30	20	30	1	00
		TUT	20		30		4	50

Pre-requisite Course	Mathe	ematics & Statistics, python Programming Skills
Codes		
	CO1	To develop a basic understanding of AI building blocks presented in intelligent agents.
	CO2	To choose an appropriate problem-solving method and knowledge representation technique.
Course Outcomes	CO3	To acquire fundamental knowledge of machine learning models.
	CO4	To Apply classification techniques to categorize given datasets into distinct classes using machine learning models.
	CO5	To Apply different regression techniques to predict continuous values from given datasets.
	CO6	To Analyze model performance using evaluation metrics like Confusion Matrix, Precision, Recall, and F1-score.

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Title: Introduction to Artificial Intelligence		
	1.1	Introduction: History of Artificial Intelligence, Intelligent	1,2	3
		Systems: Categorization of Intelligent System, Components of		
		AI Program, Foundations of AI, Sub-areas of AI, Applications		
		of AI, Current trends in AI, Ethics, Challenges, and Future Trends		
		in AI		
	1.2	Intelligent Agents: Agents and Environments, The concept	1,2,3	1
		of rationality, The nature of environment, The structure of		
		Agents, Types of Agents, Learning Agent.		
2		Title: AI Techniques & Problem Solving		
	2.1	Uninformed Search Methods: Breadth First Search (BFS),	1,2,4	2
		Depth First Search (DFS), Depth Limited Search		
	2.2	Informed Search Methods: Greedy best first Search, A*	1,2,4	2
		Search, Memory bounded heuristic Search.		
	2.3	Knowledge Representation & Reasoning: Logical Reasoning	1,2,4	2
		(Propositional & Predicate Logic), Expert Systems and Decision		
		Trees		
3		Title: Introduction to Machine Learning		
	3.1	Definition & Importance of ML, Differences Between AI, ML &	1,2,3	2
		Data Science, paradigms of machine learning- Supervised learning,		

		(Autonomous College affiliated to University of Muml	pai)	
		unsupervised learning, semi-supervised learning, semi supervised		
		learning, Transfer learning and domain adaptation		
	3.2	Training Error, Generalization error, Overfitting,	1,2	2
		Underfitting, Bias Variance trade-off.		
4		Title: Learning with Regression and Trees		
	4.1	Learning with Regression: Definition of Regression in Machine	1,2,6	2
		Learning, Real-World Applications of Regression (Stock Price		
		Prediction, House Price Estimation, Sales Forecasting) Linear		
		Regression, Multivariate Linear Regression, Logistic		
		Regression.		
	4.2	Learning with Trees: Decision Trees, Constructing Decision	1,2,3,7	2
		Trees using Gini Index (Regression)		
5		Title: Learning with Classification		
5	5.1	Definition & Importance of Classification, Difference between	1,2,4	2
		Classification and Regression, Real-World Applications of		
		Classification (Spam Detection, Fraud Detection, Medical		
		Diagnosis), Types of Classification Algorithms.		
	5.2	Support Vector Machine: Concept of Hyperplanes & Support	1,2,3	2
		Vectors, SVM for linear and nonlinear classification, Basics		
		of Kernel trick.		
	5.3	Support Vector Regression, Multiclass Classification	1,3	1
6		Title: Learning with Clustering		
	6.1	Definition & Importance of Clustering, major clustering approaches,	4,5	1
		Applications of Clustering (Customer Segmentation, Anomaly		
		Detection, Image Segmentation)		
	6.2	Clustering Techniques & Algorithms: K-Means Clustering,	4,5	2
		Hierarchical Clustering, Density-Based Clustering (DBSCAN)		
			Total	26

Module No.	Sr.no	Suggested List of Tutorial	Ref.	Hrs.
1	1.1	 Breadth-First Search (BFS): For a given a scenario where multiple paths exist between locations, how would BFS ensure finding the shortest path? Apply BFS to a transportation network, a social network, or a maze-solving problem and describe the order of exploration. Depth-First Search (DFS): In a game tree or file system, how would DFS be used to traverse the structure efficiently? Given a complex decision-making problem, apply DFS to find all possible solutions before making a decision. 	1,2,3	4
	1.2	Greedy Best-First Search: In a delivery routing system, how can Greedy BFS be applied to find a quick, though not necessarily optimal, delivery path?	1,2,3	4

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

THE MATCH		(Autonomous College affiliated to University of Mur	nbai)	
		 Apply Greedy BFS to a word puzzle game, where you move toward the most promising next step based on estimated success. A* Search 		
		 You are designing a navigation system for a self- driving car, how would you use A* to ensure an optimal route? Apply A* to project scheduling, where tasks must be completed in an optimal sequence based on priority and 		
	1.3	dependencies. Case study on State space formulation and PEAS representation for various AI applications	1,2	2
2	2.1	 Linear Regression & Classification For any given dataset, apply Linear Regression to predict a continuous outcome. For any given dataset, apply Logistic Regression for binary classification. For any given dataset, apply a Decision Tree to classify or predict outcomes. For any given dataset, determine whether a Linear or 	6,7,8	4
	2.2	 Non-Linear classification approach is suitable. Consider a classification problem where the target variable has three or more categories (e.g., classifying emails as Spam, Promotions, or Primary). How would you use algorithms like Softmax Regression, Decision Trees, or Random Forest to build a model? How do you evaluate the model using Precision, Recall, and Confusion Matrix? If new class probabilities are given, how do you decide which class a new instance belongs to? 	6,7	4
3	3.1	For any given dataset, apply K-Means Clustering to segment data into groups.	8,9	2
	3.2	 For any given dataset, apply Hierarchical Clustering to create a hierarchical grouping. Consider a dataset where you want to cluster products based on their sales performance. What are the differences between Agglomerative and Divisive Clustering? How do you decide which two clusters to merge first using Single-Linkage vs. Complete-Linkage? How can you visualize the hierarchical structure using a dendrogram? 	8,9	2
	3.3	For any given dataset, apply DBSCAN to detect clusters and outliers.	8,9	2
4	4.1	Mini project/presentation/Group activity/ Simulation using modern tools on regression, classification and clustering	13,14,15	2
			Total	26

Course Assessment:

Theory:

ISE-1: Activity: Quiz, Mind map and assignments 20 Marks **ISE-2:** Two hours 20 Marks Activity: Article Discussion, Quiz and Assignments Outcome: Reflective Journal

MSE: 90 min 30 Marks written examination based on 50% syllabus **ESE:** 90 min 30 Marks written examination based on remaining 50% syllabus

TUT:

ISE:

 ISE-1 will be conducted for 50% of numerical problems given in the syllabus. Continuous pre-defined rubrics-based evaluation for 20 marks.
 ISE-2

a. Remaining 50% of numerical problems given in the syllabus. Continuous pre-defined rubrics-based evaluation for 20 marks.

b. Simulation using modern tools to solve the given problem statement for 10 marks/Mini project

Recommended Books:

- Stuart J. Russell and Peter Norvig, "Artificial Intelligence: A Modern Approach", Fourth Edition" Pearson Education, 2020
- 2. Saroj Kaushik, "Artificial Intelligence", Cengage Learning, First edition, 2011
- 3. Nils J. Nilsson, Principles of Artificial Intelligence, Narosa Publication
- 4. Deepak Khemani, A First Course in Artificial Intelligence, McGraw Hill Publication
- 5. Peter Harrington, "Machine Learning in Action", Dream Tech Press.
- 6. Ethem Alpaydın, "Introduction to Machine Learning", MIT Press.
- 7. Stephen Marsland, "Machine Learning an Algorithmic Perspective", CRC Press.
- 8. Han Kamber, "Data Mining Concepts and Techniques", Morgan Kaufmann Publishers.
- 9. Margaret. H. Dunham, —Data Mining Introductory and Advanced Topics, Pearson Education.
- 10. Kevin P. Murphy, Machine Learning "A Probabilistic Perspective".
- 11. Samir Roy and Chakraborty, "Introduction to soft computing", Pearson Edition.
- 12. Richard Duda, Peter Hart, David G. Stork, "Pattern Classification", Second Edition, Wiley Publications.

Online Resources:

- 13. https://onlinecourses.nptel.ac.in/noc21_cs24/preview
- 14. https://onlinecourses.nptel.ac.in/noc25_cs50/preview?utm_source=chatgpt.com
- 15. https://onlinecourses.nptel.ac.in/noc21_cs85/preview

Further Reading:

- 1. https://onlinecourses.nptel.ac.in/noc21_cs85/preview?utm_source=chatgpt.com
- 2. https://www.youtube.com/playlist?list=PLZoTAELRMXVPBTrWtJkn3wWQxZkmTXG

we

DOUBLE MINOR (DM) (OPTIONAL MINOR IN EMERGING AREAS)

Blockchain Technology (offered to ECS)

Course Code	Course Name		Teaching Scheme (Hrs/week)				Credits Assigned			signed
Code			L	Т	Р		L	Τ	Р	Total
	Blockchain Basics		2	2			2	2		4
			Examination Scheme							
25DM71			ISE1	MS	SE	ISE2	ES	SE	r	Fotal
		TH	20	3	0	20	30		100	
		TU	20		-	30	-	-	50	

Pre-requisite Course Codes	PCC1	3CE11
	CO1	Explain Blockchain concepts in the context of distributed ledger.
	CO2	Associate concepts of cryptocurrencies, consensus algorithms and mining with security of blockchain.
	CO3	Explain basic working principles of Ethereum.
Course Outcomes	CO4	Apply the concepts of smart contact using Solidity programming for a given application.
	CO5	Explore Hyperledger Fabric and its working as a private blockchain.
	CO6	Demonstrate the components of blockchain and the processes used in blockchain for a given problem as well as in real world applications.

Module No.	Unit No.	Topics	Ref.	Hrs.
1	1.1	Introduction to Blockchain Technology: What is a blockchain, Origin of blockchain, Foundation of blockchain: Genesis block, Merkle trees, limitations and applications of blockchain	1,3	3
	1.2	Components of blockchain, Block in blockchain, Types of blockchain: Public, Private, and Consortium, Consensus protocols: Proof-of-Work (PoW), Proof-of-Burn (PoB), Proof-of-Stake (PoS), and Proof-of-Elapsed Time (PoET), mining in blockchain, Mining pool and its methods	1,3	4
2	2.1	Ethereum and its Components, Mining in Ethereum, Ethereum Virtual Machine (EVM), Transaction, Accounts, Architecture and Workflow, Mist Wallet, Ethereum frameworks	1,3	03
	2.2	Exploring etherscan.io and the block structure Ethereum test networks Decentralized file system: IPFS	1,2	03

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

FI. Agnel Ashram, Banustanu, Banura (W), Mumbai – -	100 030
(Autonomous College affiliated to University of Mu	mbai)

3	3.1	Programming for Blockchain:	1	1
U		Introduction to Smart Contracts, Types of Smart Contracts,	-	•
		Limitations of Smart Contracts		
	3.2	Introduction to Programming: Solidity Programming – Basics, functions, Visibility and Activity Qualifiers, Address and Address Payable, Bytes and Enums, Arrays-Fixed and Dynamic Arrays, Special Arrays-Bytes and strings, Struct, Mapping, Inheritance, Error handling, events, If-Then-Else, For loop	Useful Link 5	4
4		Need of Private Blockchain, Consensus Algorithms for Private Blockchain - PAXOS, Byzantine Faults: Byzantine Fault Tolerant (BFT) and Practical BFT	1, Ref.3	4
5		Introduction to Hyperledger, Tools and Frameworks Hyperledger Fabric: Hyperledger Fabric Architecture, Components of Hyperledger Fabric, Transaction Flow, application for supply chain management	1, Ref.3	4
			Total	26

Suggested list of tutorials: (Minimum 10)

Sr.	Suggested Tutorials				
no.					
1	Explore various blockchain platforms other than Bitcoin and Ethereum	2			
2	Case study: blockchain security threats with real life incidents of the	2			
	attacks				
3	Case study of application of blockchain in Fintech	2			
4	Case study of supply chain management using blockchain	2			
5	Case study: Blockchain integrated with AI/Cloud computing/IoT	2			
6	Block mining and reward transfer to the account	2			
7	Solidity program: voting application	2			
8	Solidity program: crowd funding	2			
9	Solidity program: Transactions using Remix IDE and MetaMask	2			
10	Storing and retrieving file from IPFS	2			
11	Smart contract execution using Ganache	2			

Recommended Books:

- 1. Blockchain Technology, Chandramouli Subramanian, Asha A. George, Abhillash K. A and Meena Karthikeyen, Universities Press.
- 2. Mastering Ethereum, Building Smart Contract and Dapps, Andreas M. Antonopoulos Dr. Gavin Wood, O'reilly.
- 3. Imran Bashir, Mastering Blockchain: A deep dive into distributed ledgers, consensus protocols, smart contracts, DApps, cryptocurrencies, Ethereum, and more, 3rd Edition, Packt Publishing.
- 4. Blockchain for Beginners, Yathish R and Tejaswini N, SPD
- 5. Blockchain Basics, A non-Technical Introduction in 25 Steps, Daniel Drescher, Apress
- 6. Blockchain with Hyperledger Fabric, Luc Desrosiers, Nitin Gaur, Salman A. Baset, Venkatraman Ramakrishna, Packt Publishing

Useful Links:

- 1. https://www.blockchain.com/explorer/assets/btc
- 2. https://etherscan.io/
- 3. https://bitcoin.org/bitcoin.pdf
- 4. https://ethereum.org/en/whitepaper/
- 5. https://docs.soliditylang.org/
- 6. Research paper on integration of blockchain and Cloud computing: https://ieeexplore.ieee.org/document/9252909

DOI: 10.1109/ACCESS.2020.3036812

- 7. <u>https://www.researchgate.net/publication/333639731_Blockchain_Technologies_for_</u>
- 8. Research paper on integration of blockchain and AI: https://ieeexplore.ieee.org/iel7/6287639/10380310/10379100.pdf

DOI: 10.1109/ACCESS.2023.3349019

9. https://www.infosys.com/industries/financial-services/whitepapers/documents/blockchain-adoption-financial-services.pdf

Course Assessment:

Theory:

ISE-1:

Activity: Quiz/Assignments 20 Marks **ISE-2**: Two hours 20 Marks Activity: Article Discussion/Quiz/Assignments/Seminar

MSE: 90 minutes 30 Marks written examination based on 50% syllabus **ESE:** 90 minutes 30 Marks written examination based on remaining syllabus after MSE

Practical: (10 Nos.)

ISE1: 20 marks based on first five tutorials as per the predefined rubrics **ISE2**: 30 marks based on the remaining five tutorials as per the predefined rubrics

Course Code	Course Name	Teachin g Scheme (Hrs/week)			Credits Assigned			ned		
		L	Т	P		L	Т	Р	,	Total
		2	2			2	2	1		4
25DM	Bitcoin and Crypto		Examination Scheme							
72	currency			ISE1	MSE	Ι	SE2	I	ESE	TOTAL
		Theor	y	20	30		20		30	100
		TUT		20	-		30		-	50

Pre-requisite Course Codes		duction to Cryptography: Hash functions, Public key graphy, Digital Signature (ECDSA)
Course Outcomes	CO1	Describe the basic concept of Block chain.
	CO2	Associate knowledge of consensus and mining in Block chain
	CO3	Summarize the bit coin crypto currency at an abstract level
	CO4	Apply the concepts of keys, wallets and transactions to the Bit coin network
	CO5	Interpret the knowledge of Bit coin network, nodes and their roles
	C06	Illustrate the applications of Block chain and analyze case studies

Sr.	Module	Topics	Ref	Hours
No.				
0	Prerequisite	Introduction to Cryptography: Symmetric Key Cryptography, Public key cryptography, Hash functions, Digital Signature (ECDSA)		3
1	Introduction to Block chain	Structure of a Block, Block Header, Block Identifiers: Block Header Hash and Block Height, The Genesis Block, Linking Blocks in the Block chain.	1, 4	2
2	Consensus and Mining	Decentralized Consensus, Byzantine General's Problem, Independent Verification of Transactions, Mining Nodes, Aggregating Transactions into Blocks, Constructing the Block header, Mining the Block, Successfully Mining the Block, Validating a New Block, Assembling and Selecting Chains of Blocks, Block chain Forks Self-learning Topics: Study different consensus algorithms	1,3	6
3	Introduction to Bit coin	What is Bit coin and the history of Bit coin, Bit coinTransactions, Altcoins, Tokens (Utility and Security), UTXOand double spending.Self-learningTopics:Studythe websitecoinmarketcap.com/	1,3	4

Society of St. Francis Xavier, Pilar's

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram,	Bandstand,	Bandra (W),	, Mumbai – 40	0 050
(A-++++++++++++++++++++++++++++++++++++		tod to Theire	and a star	1

		(Autonomous College affiliated to University of M	lumbai)	
4	Concepts of Bit coin	Keys and addresses, Wallets and Transactions: Public Key Cryptography and Crypto currency, Private and Public Keys, Bit coin Addresses, Base58 and Base58Check Encoding, Nondeterministic (Random) Wallets, Deterministic (Seeded) Wallets, HD Wallets (BIP-32/BIP-44), Transaction Outputs and Inputs, Transaction Fees, Transaction Scripts and Script Language, Turing Incompleteness, Stateless Verification, Script Construction (Lock + Unlock), Pay-to-Public-Key- Hash (P2PKH). Self-learning Topics: Visit and use <u>https://bitcoin.org/en/</u>	1,3	6
5	Bit coin Networks	Peer-to-Peer Network Architecture, Node Types and Roles, Incentive based Engineering The Extended Bitcoin Network, Bitcoin Relay Networks, Network Discovery, Full Nodes, Exchanging "Inventory", Simplified Payment Verification (SPV) Nodes, Bloom Filters, SPV Nodes and Privacy, Encrypted and Authenticated Connections, Transaction Pools Self-learning Topics: Study technical papers based on bitcoin security	1,3	3
6	Cryptocurren cy Applications & Case Studies	Domain-Specific Applications: FinTech, Records & Identities, cross-border payments, Gaming and NFTs Self-learning Topics: Read Technical papers on bitcoin applications	2,4,6	2

Suggested list of tutorials: (Minimum 10)

Module	Sr.	Suggested List of Tutorials	Ref	Hrs.
No	no.			
1	1	Introduction to Blockchain Objective: Understand the basic structure of blockchain and how blocks are linked. Topics: Block structure, Block header and identifiers, The Genesis Block, Linking Blocks in Blockchain Activity: Visualize the blockchain structure using a block explorer.	1,4	2
2	2	Consensus and Mining Basics Objective: Learn about decentralized consensus and the mining process. Activity: Research and compare different consensus algorithms of Polygon. RCorda, Litecoin	1,3	2
4	3	Bitcoin Transactions and Fees	1,3	2

		(Autonomous College affiliated to University of Mumbai)		
		 Objective: Learn how Bitcoin transactions work and how fees are determined. Topics : Transaction inputs and outputs, Pay-to-Public-Key-Hash (P2PKH), Transaction scripts and Bitcoin script language, Transaction fees and balance calculations Hands-on Activity: Use a Bitcoin block explorer to analyze a real transaction. 		
4	4	 Blockchain Forks and Network Disruptions Objective: Understand blockchain forks and their impact. Topics : Soft forks vs hard forks, Chain reorganizations, Famous forks (e.g., Bitcoin Cash) Activity: Research a famous Bitcoin fork and discuss its impact. 	1,3	2
3	5	Creating and Sharing Tokens Topics: Token standards (ERC-20, ERC-721), Smart contracts for tokens, Hands-on Activity: Use an online platform (Ethereum Remix) to create a simple token.	1,3	2
5	6	Bitcoin Security and Privacy Objective: Understand security risks and privacy concerns in Bitcoin Topics: Private key security, Bitcoin transaction anonymity, Common attack vectors (51% attack, Sybil attack) Activity: Read a technical paper on Bitcoin security and summarize key findings.	1,3	2
6	7	 DeFi and Future of Cryptocurrency Objective: Understand Decentralized Finance (DeFi) and upcoming blockchain trends. Topics: DeFi platforms, Staking and yield farming, The future of Bitcoin and Layer 2 solutions Activity: Research and present an upcoming DeFi project. 	2,4, 6	2
6	8	Cross-Chain Transactions and Atomic Swaps Objective: Learn how Bitcoin interacts with other blockchains. Topics : Introduction to atomic swaps, Hashed Time-Locked Contracts (HTLC) ,Cross-chain trading using Lightning Network , Role of decentralized exchanges (DEXs) Hands-on Activity: Use a testnet atomic swap simulator to swap Bitcoin with another cryptocurrency.	2,4, 6	2
6	9	Regulatory Challenges and Legal Considerations in Bitcoin Objective: Understand the legal aspects and global regulations of Bitcoin. Topics : Bitcoin's legal status in different countries, Taxation and reporting for Bitcoin transactions, Anti-Money Laundering (AML) and Know Your Customer (KYC) laws, Impact	2,4, 6	2

		(natonomous conego annatou to omversity or mambar)		
		of Central Bank Digital Currencies (CBDCs) on Bitcoin		
		Activity: Research Bitcoin regulations in our country and prepare a		
		summary. Analyze a case study of Bitcoin-related legal action (e.g.,		
		Silk Road, Mt. Gox).		
6	10	Stablecoins - Bridging Crypto and Traditional Finance	2,4,	2
			6	
		Objective: Understand the role of stablecoins in the cryptocurrency		
		ecosystem.		
		Topics : Definition and types of stablecoins (Fiat-backed, Crypto-		
		backed, Algorithmic), Use cases and advantages of stablecoins,		
		Risks and regulatory challenges, Popular stablecoins (USDT,		
		USDC, DAI) Activity: Research and compare different stablecoins		
		based on their stability mechanism and adoption.		

Recommended Books:

- 1. "Mastering Bitcoin, PROGRAMMING THE OPEN BLOCKCHAIN", 2nd Edition by Andreas M. Antonopoulos, June 2017, O'Reilly Media, Inc. ISBN: 9781491954386.
- 2. "Blockchain Applications: A Hands-On Approach", by Arshdeep Bahga, Vijay Madisetti, Paperback 31 January 2017.
- "Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction", July 19, 2016, by Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, Steven Goldfeder, Princeton University Press.
- 4. Mastering Blockchain", by Imran Bashir, Third Edition, Packt Publishing
- 5. "Mastering Ethereum: Building Smart Contracts and Dapps Paperback" byAndreas Antonopoulos, Gavin Wood, Publisher(s): O'Reilly Media
- 6. "Blockchain revolution: how the technology behind bitcoin is changing money, business and the world \$ don tapscott and alex tapscot, portfolio penguin, 856157449

Online References:

Sr. No.	Website Name
1	https://andersbrownworth.com/blockchain/
2	https://andersbrownworth.com/blockchain/public-private-keys/
3	https://www.coursera.org/learn/cryptocurrency
4	https://coinmarketcap.com/

Course Assessment:

Theory:

ISE-1: Activity: Quiz / Assignments 20 Marks ISE-2: Two hours 20 Marks Activity: Quiz/Assignments/Group discussion MSE: 90 min 30 Marks written examination based on 50% syllabus

ESE: 90 min 30 Marks written examination based on remaining 50% syllabus after MSE

TUT: ISE:

1. ISE-1 will be conducted for four or 50% of tutorials. Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2

a. Remaining Four experiments or 50% of experiments. Continuous pre-defined rubricsbased evaluation for 20 marks.

b. Simulation using modern tools to solve the given problem statement/ Debate/ research paper analysis/ case studies for 10 marks/Mini project

DOUBLE MINOR (DM) (OPTIONAL MINOR IN EMERGING AREAS)

Cyber Security (offered to ECS)

Course Code	Course Name		ing Sch rs/week		Credits Assigned				
		L	Т	Р	L	Т	Р	Total	
		2	2		2		2	4	
25DM81	Cyber Security		E	xamina	ation Sc	heme			
	Essentials		ISE1	MSE	ISE2	ESE	Total		
		Theory	20	30	20	30	1	00	
		Tutorial	20		30		4	50	

Pre-requisite Course		
Codes		
	CO1	Identify cybersecurity threats, vulnerabilities, and risks in digital systems.
	CO2	Analyze the theoretical principles behind common attack vectors and defense mechanisms
Course Outcomes	CO3	Evaluate security policies, risk management strategies, and regulatory frameworks.
	CO4	Discuss the theoretical foundations of cryptography and data protection.
	CO5	Critique theoretical models of secure network architectures and propose enhancements.

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	Cyber	rsecurity Threats and Vulnerabilities		
	1.1	Overview & Importance of Cybersecurity	1, 2,	2
		• Role and significance of cybersecurity in the digital age	4	
		Overview of key cybersecurity domains		
		• Historical milestones and evolution of cyber threats		
		• Impact of past incidents on current cybersecurity paradigms		
	1.2	Fundamental Terminologies & Concepts	1, 2,	2
		• Definitions of threat, vulnerability, risk, and mitigation	4	
		• Overview of cybersecurity frameworks and theoretical		
		models		
		Classification of cyber threats and threat actors		
		Threat intelligence		
	1.3	Malware: Viruses, Worms, Trojans, and Ransomware	1, 2,	1
		• Characteristics and behaviors of various malware types	4	
		Theoretical discussion of propagation methods and impact		
	1.4	Vulnerability Fundamentals	1, 2,	2
		• Examination of vulnerabilities in software, hardware, and	4	
		human factors		
		Common security weaknesses (e.g., unpatched systems)		
2	Cyber	r Attack Vectors and Defense Mechanisms		

Society of St. Francis Xavier, Pilar's

Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

	r	(Autonomous College affiliated to University of Mum	-	
	2.1	Introduction to Attack Vectors	1, 2,	1
		• Definition and significance of attack vectors	4	
		Overview of classification		
	2.2	Network-Based Attacks	1, 2,	1
		• DoS/DDoS, Man-in-the-Middle attacks	4	
		Network vulnerabilities		
	2.3	Application-Based Attacks	1, 2,	1
		SQL Injection, XSS, CSRF	4	
		• Underlying exploitation principles		
	2.4	Social Engineering & Insider Threats	1, 2,	1
		• Phishing, spear phishing, pretexting	4	
		• Theoretical analysis of insider risks		
	2.5	Advanced Persistent Threats (APTs)	1, 2,	1
		• Multi-vector, long-term infiltration strategies	4	
		• Theoretical models of APTs		
	2.6	Defense Mechanisms	1, 2,	1
		Conceptual frameworks for mitigating attacks	4	1
		• Comparative analysis of defense strategies		
3	Secur	ity Policies and Risk Management Strategies		
	3.1	Introduction to Risk Management	1, 2,	2
	5.1	8	1, 2,	2
		• Theoretical concepts of risk, impact, and likelihood	-	
		• Overview of risk management processes		
		• Risk Assessment Models: NIST SP 800-30, OCTAVE,		
	2.2	DREAD, ISO/IEC 27005	1.0	2
	3.2	Security Policies/Standards, Regulatory & Legal	1, 2,	2
		Frameworks	4	
		• Analysis of key standards (ISO, NIST, CIS)		
		• Components and rationale behind effective policies		
		• Overview of major regulations (e.g., GDPR, HIPAA)		
		• Impact on cybersecurity practices.		
	3.3	Incident Response & Disaster Recovery	1.0	1
	5.5	1 0	1, 2, 4	1
		Conceptual models of incident response planning Dest prostings from a theoretical standardint	4	
	2.4	Best practices from a theoretical standpoint Evaluating and Undering Security Policies	1.0	1
	3.4	Evaluating and Updating Security Policies	1, 2,	1
		• Critical assessment techniques for policy effectiveness	4	
4	D	Theoretical case studies on policy evolution		
4		dations of Cryptography and Data Protection		-
	4.1	Introduction to Cryptography	1, 2,	2
		Basic principles and history of cryptography	4	
		• Theoretical importance of confidentiality, integrity, and		
		authenticity		
		Symmetric and asymmetric encryption		
		• Discussion of use cases and underlying mathematical		
		concepts		
	4.2	Hashing Algorithms, Digital Signatures & Certificates	1, 2,	1
			4	

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

Fr. Agnel Ashram	, Bandstand, Band	lra (W), Mu	mbai – 400 05
(Autonomous C	college affiliated to	o University	y of Mumbai)

		(Autonomous College affiliated to University of Mumba	L)	
		• Overview of hashing techniques and their theoretical		
		applications		
		Analysis of digital signatures and certificate frameworks		
	4.3	Key Management and Cryptographic Protocols	1, 2,	1
		• Theoretical approaches to secure key generation,	4	
		distribution, and storage		
		• Discussion on cryptographic protocols and their underlying		
		principles		
	4.4	Data Protection Techniques	1, 2,	2
		Encryption Methods: Advanced Encryption Standard (AES) for	4	
		data at rest, TLS/SSL for securing data in transit.		
		Data Masking Techniques, Tokenization Approaches, Full disk		
		and file-level encryption strategies, Data Loss Prevention (DLP)		
		conceptual models		
5	Secur	e Network Architectures		
	5.1	Network Security & Frameworks	1, 3,	4
		Secure network architecture theories, defense-in-depth	4	
		strategies,		
		Firewall models and their theoretical foundations, Intrusion		
		Detection & Prevention, Virtual Private Networks (VPNs) &		
		Remote Access Security, VPN technologies and secure		
		tunneling, challenges in ensuring secure remote access.		
	5.2	Wireless Network Security	1, 3,	2
		WEP, WPA, WPA2, WPA3, comparative analysis of Secure	4	
		Network Architectures		
		Authentication Methods: 802.1X Framework, EAP Methods:		
		Attack Vectors: Evil Twin Attacks, Deauthentication Attacks,		
		Man-in-the-Middle (MitM)		
			Total	26

	Suggested Tutorials
Sr.	Tutorial
No.	
1	Threat Identification Workshop (CO1): An in-class activity where students work in small groups on simulated scenarios to identify potential cybersecurity threats, vulnerabilities, and risks. They document their findings on a shared digital whiteboard or paper.
	A group report (2–3 pages) summarizing identified threats with justifications, submitted at the end of the session.
2	Historical Cyber Incident Analysis (CO1): A case study in which groups review documented historical cybersecurity incidents to examine the sequence of events, exploited vulnerabilities, and overall impact. A 10-minute group presentation accompanied by a one-page summary report detailing lessons learned.
3	Attack Vector Simulation Discussion (CO2): A group discussion/simulation where students map out theoretical attack vectors (network-based, application-based, etc.) on paper and discuss possible defense mechanisms.

	(Autonomous College affiliated to University of Mumbai)
	A flowchart and a one-page commentary explaining the simulated attack vectors and defenses.
4	Network Attack Case Study (CO2): A case study focusing on a specific network attack (e.g.,
	DDoS or Man-in-the-Middle). Students dissect the case to understand how the attack was
	executed and evaluate theoretical defense strategies.
	A detailed case study report (3–4 pages) along with a brief 5-minute summary presentation.
5	Policy Evaluation Assignment (CO3): A written assignment where students are provided
	with sample security policies to evaluate their strengths and weaknesses using theoretical
	frameworks, then propose improvements.
	An analytical essay (4–5 pages) with an annotated copy of the policy document.
6	Risk Management Comparative Analysis (CO3): A written assignment in which students
	compare various risk assessment models (NIST SP 800-30, OCTAVE, DREAD, ISO/IEC
	27005) through research and theoretical analysis.
-	A comparative analysis report (4–5 pages) supported by tables and diagrams as needed.
7	Cryptography Theory Seminar (CO4): A seminar/presentation where students research and
	present on the theoretical foundations of cryptography—including symmetric vs. asymmetric
	encryption, hashing, and digital signatures—with emphasis on underlying mathematics and
	conceptual frameworks.
8	A 15-minute presentation with supporting slides and a brief summary handout $(1-2 \text{ pages})$.
ð	Data Protection Techniques Debate (CO4): A debate/discussion activity that divides the class into teams to debate the merits and drawbacks of various data protection techniques (e.g.,
	AES vs. TLS/SSL, tokenization, data masking) using theoretical evidence.
	Each team submits a position paper (2–3 pages) outlining their arguments and supporting
	evidence.
9	Network Architecture Critique Workshop (CO5): A workshop where groups review
,	several secure network architecture models, analyzing defense-in-depth strategies, firewall
	models, and VPN configurations, then critique their theoretical effectiveness.
	A critique report (around 3 pages) and a group discussion presentation of key findings.
10	Secure Architecture Enhancement Project (CO5): A group project where teams select an
	existing network architecture model and propose theoretical enhancements based on current
	literature and best practices.
	A comprehensive project report (5-6 pages) along with a 15-minute group presentation
	outlining proposed improvements.
11	Integrated Threat Analysis Exercise (CO1 & CO2): An in-class activity/simulation where
	students are given a comprehensive scenario that includes multiple threat elements; they
	identify threats (CO1) and then analyze associated attack vectors (CO2).
	A combined analysis report (2–3 pages) and a visual diagram or mind map illustrating the
	relationship between threats and attack vectors.
12	Attack Response Simulation and Demonstration (CO2 & CO3): A simulation exercise
	where students role-play an attack scenario in a simulated environment and develop a
	theoretical incident response plan incorporating risk management and policy-based mitigation
	strategies. Additionally, the instructor demonstrates a live or recorded attack (e.g., simulated
	phishing or network intrusion) to illustrate key concepts.
	A written incident response plan (3 pages) and a brief in-class demonstration analysis with
12	active participation in a discussion.
13	Security Policy and Cryptography Integration (CO3 & CO4): An assignment/discussion
	where students evaluate how cryptographic techniques (e.g., encryption, key management, digital signatures) support and reinforce security policies and rick management strategies. An
	digital signatures) support and reinforce security policies and risk management strategies. An integrated analytical report (4 pages) and active participation in an in-class discussion
	integrated analytical report (4 pages) and active participation in an in-class discussion.

14	Cryptography and Network Architecture Synergy (CO4 & CO5): A group project where students investigate the interplay between cryptographic protocols and secure network design by analyzing case studies and proposing a cohesive integrated model. A project report (5 pages) accompanied by a 15-minute group presentation detailing the proposed integrated model.
15	Comprehensive Security Analysis and Strategic Recommendations (CO1, CO2, CO3,
	CO4, CO5): In this capstone project, teams are provided with a detailed fictional scenario of
	a medium-sized organization facing diverse cybersecurity challenges. Students must perform
	a thorough analysis by identifying potential threats and vulnerabilities (CO1); examining and
	analyzing relevant attack vectors (CO2); evaluating risk management strategies and security
	policies (CO3); recommending appropriate cryptographic and data protection measures
	(CO4); and designing a secure network architecture to mitigate the identified risks (CO5).
	A comprehensive strategic report (8–10 pages) detailing the analysis, recommendations, and
	proposed security architecture, along with a final presentation (20 minutes) summarizing the
	findings and strategic recommendations.

Course Assessment:

Theory:

ISE-1: Activity: Quiz and assignments 20 Marks/ One hour Test 20 Marks **ISE-2:** One hours 20 Marks Activity: Case studies, Article Discussion, Quiz and Assignments

MSE: 90minutes- 30 Marks written examination based on 50% syllabus **ESE:** 90minutes- 30 Marks written examination based on remaining 50% syllabus

Tutorial:

ISE-1: Activity/ Quizzes/ Assignments (20 Marks)

ISE-2: Activity: Case studies, Article Discussion/ Quiz/ Assignments (20 Marks), Seminar on Recent Research paper/ real life Cyber security incident analysis(10Marks)

Recommended Books:

- 1. William Stallings and Lawrie Brown authored "Computer Security: Principles and Practice" (5th edition), published by Pearson Education in 2023.
- 2. Charles P. Pfleeger, Shari Lawrence Pfleeger, and Lizzie Coles-Kemp authored "Security in Computing" (6th edition), published by Addison-Wesley Professional in 2023.
- 3. Bernard Menezes and Ravinder Kumar authored "Cryptography, Network Security, and Cyber Laws" (assumed 3rd edition), published by Cengage Learning in 2021.
- 4. Matt Bishop authored "Computer Security: Art and Science" (1st edition), published by Addison-Wesley Professional in 2003.

Online Resources:

- 1. ITACT 2000: https://www.meity.gov.in/content/information-technology-act-2000-0
- $\label{eq:linear} 2. \ \underline{https://eprocure.gov.in/cppp/rulesandprocs/kbadqkdlcswfjdelrquehwuxcfmijmuixngudufgbuu} \\ \underline{bgubfugbububjxcgfvsbdihbgfGhdfgFHytyhRtMTk4NzY=}$
- 3. NIST Cybersecurity Framework: <u>https://www.nist.gov/cyberframework</u>

- 4. MITRE ATT&CK Framework: <u>https://attack.mitre.org/</u>
- 5. OWASP Top Ten: https://owasp.org/www-project-top-ten/
- 6. US-CERT: <u>https://www.us-cert.gov/</u>
- 7. Center for Internet Security (CIS): <u>https://www.cisecurity.org/</u>
- 8. SANS Institute Whitepapers: https://www.sans.org/white-papers/
- 9. Cybrary Free Cyber Security Training: <u>https://www.cybrary.it/</u>
- 10. Cybersecurity & Infrastructure Security Agency (CISA): https://www.cisa.gov/
- 11. Krebs on Security: https://krebsonsecurity.com/
- 12. Google Security Blog: https://security.googleblog.com/
- 13. Microsoft Security Blog: <u>https://www.microsoft.com/security/blog/</u>

NPTEL:

- 1. https://nptel.ac.in/courses/128106006
- 2. https://archive.nptel.ac.in/courses/106/106/106106129/

Course Code	Course Name	Teaching Scheme (Hrs/week)			C	Credits Assigned			
	Web application penetration testing and Ethical hacking	L	Т	Р	L	Т	Р	Total	
		2	2		2	2		4	
25DM82		Examination Scheme							
25DN162			ISE1	MSE	ISE2	ESE	Total		
		Theory	20	30	20	30	100		
		Tutorial	20		30		4	50	

Pre-requisite Course	Basics	of networking and web technologies.
Codes		
	CO1	Integrate foundational cybersecurity concepts with ethical hacking methodologies into a cohesive theoretical framework.
	CO2	Synthesize advanced penetration testing methodologies and stages as applied to web applications.
Course Outcomes	CO3	Critique prevalent web application vulnerabilities and the conceptual techniques for their exploitation.
	CO4	Evaluate legal, ethical, and regulatory dimensions that govern ethical hacking practices.
	CO5	Formulate comprehensive strategies for vulnerability assessment and incident response.

Module	Unit	Topics	Ref.	Hrs.		
No.	No.					
1	Cybersecurity and Ethical Hacking					
	1.1	Cybersecurity Foundations:	1, 2	2		
		Importance of cybersecurity in today's digital landscape. The				
		CIA Triad: Confidentiality, Integrity, Availability. Overview of				
		common cyber threats (malware, phishing, ransomware, DDoS).				
		Types of security controls: Preventive, Detective, Corrective				
	1.2	Ethical Hacking Foundations:	2,4	2		
		Definition, scope, and objectives of ethical hacking.				
		Classification of hackers: White Hat, Black Hat, Grey Hat. Phases				
		of ethical hacking: Reconnaissance, Scanning, Exploitation,				
		Maintaining Access, Covering Tracks				
	1.3	Technical Underpinnings:	3	2		
		Basic networking concepts: TCP/IP, DNS, DHCP, OSI Model.				
		Introduction to Linux fundamentals: File permissions, processes,				
		and basic commands				
2	Web 4	Application Security and Vulnerabilities				
	2.1	Web Technologies and Architecture:	5	2		
		Overview of web application architecture. Core web protocols:				
		HTTP/HTTPS. Role of front-end technologies: HTML, CSS,				
		JavaScript				
	2.2	Common Web Vulnerabilities:	4, 5	3		

(Autonomous College affiliated to Univ			
OWASP TOP10, SQL Injection, Cross-Site	Scripting (XSS),		
Cross-Site Request Forgery (CSRF),	File Inclusion		
Vulnerabilities (Local/Remote), Additional vu	Inerabilities (e.g.,		
XML External Entity attacks)			
2.3 Vulnerability Assessment:		1	1
Methods for vulnerability identification. P	rinciples of risk	-	-
assessment and vulnerability prioritization	interpres of fish		
3 Reconnaissance and Information Gathering			
3.1 Reconnaissance Strategies:		2,4	2
Passive reconnaissance techniques (OSINT)	WHOIS DNS	2,4	L
enumeration, social media profiling, Activ			
techniques: Port scanning, banner grabbing, ne	twork mapping	4	2
3.2 Tools and Methodologies:		4	2
Overview of OSINT tools (e.g., conceptual insi			
Recon-ng, Google Dorks). Review of active sca	anning tools (e.g.,		
Nmap, Netcat)			
3.3 Web Application Reconnaissance:		5	2
Directory enumeration and hidden UR			
Theoretical exploration of web reconnaissance	e tools (e.g., Burp		
Suite, DirBuster)			
4 Penetration Testing Methodologies			
4.1 Penetration Testing Process:		4	2
Penetration testing stages: Pre-Engagement,	Reconnaissance,		
Scanning, Exploitation, Post-Engagement			
theoretical testing approaches.	5		
4.2 Testing Methodologies and Approaches:		4, 5	3
Understanding and Comparative study of Black	Box, White Box,	,	
and Grey Box testing, Exploitation techniques.			
Blue Teaming, Purple Teaming, Social Eng			
Risk-Based Testing.	6 6,		
4.3 Frameworks and Guidelines:		1	1
Overview frameworks: NIST Penetration	Testing Guide	-	-
OWASP Testing Guide. Differentiation betw	-		
assessment and penetration testing approaches	con vanieraemy		
5 Legal, Ethical, and Defensive Perspectives			
5.1 Legal and Regulatory Context:		2	2
Overview of cyber laws and regulations (e.g.	IT Act CDDD	2	2
HIPAA, CCPA), ethical considerations, com			
	ipitalice, allu ule		
importance of permissions		1	2
5.2 Incident Response and Defensive Mechanism		1	2
Incident Response Lifecycle: Preparat			
Containment, Recovery. Defensive strategies: S	system hardening,		
firewalls, IDS/IPS, patch management.		_	
5.3 Case Studies and Governance:		2	2
Analysis of significant cybersecurity breach			
governance frameworks and compliance stand			
PCI DSS, SOC 2) and strategic defense best pre-			
]	Fotal	26

Society of St. Francis Xavier, Pilar's

Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050 (Autonomous College affiliated to University of Mumbai)

	Suggested Tutorials
Sr.	Tutorial
No.	
1	Network Traffic Analysis with Wireshark
	Objective: Use Wireshark to analyze packet captures and identify potential threats. Activity: 1. Open provided .pcap files in Wireshark.
	 Identify protocols, IP addresses, and suspicious traffic patterns. Detect threats like DNS anomalies, SQL injection, or SYN floods.
	4. Answer analysis questions, e.g., attacker IP or unauthorized access details.
	Tools: Wireshark and pre-captured .pcap files(<u>sample captures</u>).
2	Exploiting and Mitigating Advanced Buffer Overflow Attacks
	• Objective: Analyze and exploit a buffer overflow vulnerability, then implement mitigation techniques. Activity:
	 Use a vulnerable program to:
	 Craft a payload using Python and exploit the vulnerability. Investigate the memory layout using tools like GDB and Radare2. Apply modern mitigation techniques (ASLR, stack canaries) to secure the
	program.
3	Deconstructing Cyber Attacks from Real-World Incidents
	 Objective: Analyze the stages of a real-world cyber attack and propose a response strategy. Activity: Provide learners with anonymized data from a famous cyber attack (e.g., SolarWinds
	 breach). Use log files, network traffic, and timelines to reconstruct the attacker's steps. Propose immediate actions, long-term defensive strategies, and policy improvements.
4	Designing a Cybersecurity Framework for a Smart City
	 Objective: Create a scalable cybersecurity framework for interconnected IoT systems in a smart city. Activity:
	• Provide a scenario with IoT devices (traffic lights, surveillance cameras, etc.).
	• Identify potential vulnerabilities and map them to threats.
	• Propose a secure architecture using tools like Zero Trust and IDS/IPS for IoT.
5	Simulating an Advanced Persistent Threat (APT)
	 Objective: Simulate an APT attack on a controlled network and analyze the indicators of compromise (IOCs). Activity:

	(Autonomous Conege annated to University of Mumbal)
	• Learners simulate an APT using tools like Metasploit and Cobalt Strike alternatives (e.g., Covenant).
	• Perform reconnaissance, exploit vulnerabilities, and maintain persistence.
-	• Analyze IOCs using Splunk or ELK stack for detection and reporting.
6	Reconnaissance Competition: Defend vs. Attack
	• Objective: Perform reconnaissance to identify vulnerabilities while defending your own
	system.
	Activity:
	• Split students into two teams:
	• Team A: Conduct passive and active reconnaissance on Team B's mock network.
	• Team B: Implement monitoring tools (e.g., Wireshark, Suricata) to detect Team
	A's activities.
	 Swap roles after analyzing each round's performance.
7	Exploiting Multi-Stage Web Vulnerabilities
	• Objective: Chain multiple vulnerabilities to compromise a web application entirely.
	Activity:
	• Set up a vulnerable application with:
	 Set up a vulnerable application with. Weak authentication (SQL injection).
	 Improper session management (Session ID theft). Eile unload anthematility (Demote and equantion)
	• File upload vulnerability (Remote code execution).
0	• Learners must exploit all three in sequence to gain full system access.
8	Redesigning a Penetration Testing Report
	• Objective: Create a business-focused penetration testing report from technical findings.
	Activity:
	• Provide raw penetration test data, including vulnerabilities and exploited systems.
	• Convert technical findings into an executive summary for non-technical
	stakeholders.
	 Include risk prioritization, cost implications, and remediation recommendations.
9	Analyzing Compliance Gaps in a Healthcare System
,	Analyzing Compliance Gaps in a freatmeate System
	• Objective: Evaluate a healthcare network for compliance with HIPAA regulations.
	Activity:
	•
	• Provide a virtualized healthcare setup.
	 Identify gaps in data encryption, access controls, and audit logs. Prepage solutions to most compliance stondards and create on audit report.
10	• Propose solutions to meet compliance standards and create an audit report.
10	Incident Response Drill with Live Attack Simulation
	• Objective: Develop and execute an incident response plan for a simulated security
	incident.
	Activity:
	• Simulate an attack (e.g., ransomware outbreak) in a controlled lab environment.
	• Detect and contain the attack.
	 Perform forensic analysis to determine the root cause.
	• Report findings and execute a recovery plan.

Course Assessment:

Theory: ISE-1: Activity: Quiz and assignments 20 Marks/ One hour Test 20 Marks **ISE-2:** One hours 20 Marks Activity: Case studies, Article Discussion, Quiz and Assignments

MSE: 90minutes- 30 Marks written examination based on 50% syllabus
ESE: 90minutes- 30 Marks written examination based on remaining 50% syllabus
Tutorial:
ISE-1: Activity, Quizzes, Assignments (20 Marks)
ISE-2: Activity: Case studies, Article Discussion, Quiz and Assignments (20 Marks), Attack simulations/ Penetration testing Project(10Marks)

Recommended Books:

- 1. William Stallings, Computer Security Principles and Practice, Seventh Edition, Pearson Education,
- 2. Charles P. Pfleeger, Security in Computing, Fifth Edition, Pearson Education,
- 3. Bernard Menezes, Network Security and Cryptography, Cengage Learning.
- 4. Ummed Meel, Advanced Penetration Testing with Kali Linux: Unlocking Industry-Oriented VAPT Tactics, BPB Publications,
- 5. Prakhar Prasad, Mastering Modern Web Penetration Testing, Packt Publishing

Online Resources:

- 1. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5.pdf
- 2. <u>https://www.csoonline.com/article/571697/penetration-testing-explained-how-ethical-hackers-</u> <u>simulate-attacks.html</u>
- 3. <u>https://link.springer.com/article/10.1365/s43439-023-00100-2</u>
- 4. <u>https://owasp.org/www-project-web-security-testing-guide/</u>
- 5. https://amigocyber.com/ethical-hacking-in-practice-real-world-case-studies/